matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeFaktorraum eines Vektorraums
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Faktorraum eines Vektorraums
Faktorraum eines Vektorraums < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorraum eines Vektorraums: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:58 Di 21.09.2010
Autor: xubix

Aufgabe
Sei V=R³ und U = {(x,y,z)€V|2x-y+z=0} <= V.
[...]
Fortsetzung: Bestimmen Sie rechnerisch (ohne geometrisch zu argumentieren) den Faktorraum V/~U. Beweisen Sie eventuelle Vermutungen! [...]


Ich habe versucht, dieses Beispiel auf zwei Arten zu lösen:

Einmal über die Definition der linearen Mannigfaltigkeit, dann erhalte ich folgendes:

V/~U = {{v+U}|v€V} =
{{v+u|u€U}|v€V} =
{{v+(x,y,z)|2x-y+z=0}|v€V}

So weit, so gut. Wenn ich das Beispiel jetzt aber über die Definition der Äquivalenzrelation löse (v ~ w <=> v-w € U), dann erhalte ich folgendes:

V/~U = {{u|v-u € U}|v € V}
= [v-u in 2x-y+z=0 eingesetzt und dann alle v's nach rechts und in ein c zusammengefasst] = {{u|2*u1-u2+u3=c}|c € IR}

Jetzt zu meiner Frage: Warum habe ich bei der zweiten Methode ein c als Parameter und bei der ersten nicht? Habe ich einen Fehler gemacht oder gibt es dafür eine Erklärung?

Danke!

P.S.: Bitte verzeiht mir, dass ich nicht das Formelsystem verwendet habe, ich denke dass dieses Beispiel dennoch gut lesbar sein sollte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Faktorraum eines Vektorraums: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:17 Di 21.09.2010
Autor: xubix

Okay, erst denken, dann posten. Ich habe mir die Frage gerade selbst beantwortet; im ersten Fall ist natürlich das v der "Parameter". Bitte ignorieren.

Bezug
        
Bezug
Faktorraum eines Vektorraums: Antwort
Status: (Antwort) fertig Status 
Datum: 08:56 Mi 22.09.2010
Autor: angela.h.b.


> Sei V=R³ und U = {(x,y,z)€V|2x-y+z=0} <= V.
>  [...]
>  Fortsetzung: Bestimmen Sie rechnerisch (ohne geometrisch
> zu argumentieren) den Faktorraum V/~U. Beweisen Sie
> eventuelle Vermutungen! [...]

Hallo,

[willkommenmr].

Ich möchte Deine Frage lieber doch nicht ignorieren, sondern Dir zeigen, wie es geht. Die passenden Begründungen müßtest Du Dir hier und da noch selbst überlegen.

Dein Untervektorraum U ist zweidimensional, eine Basis ist [mm] (\v_1:=vektor{1\\2\\0}, v_2:=\vektor{1\\0\\-2}). [/mm]
U wird von diesen beiden Vektoren erzeugt, es ist also [mm] U=<\vektor{1\\2\\0}, \vektor{1\\0\\-2}>. [/mm]

Die Basis von U kann ich durch [mm] v_3:=\vektor{1\\0\\0} [/mm] zu einer Basis des [mm] \IR^3 [/mm] ergänzen.
Jedes Element v des [mm] \IR^3 [/mm] kann ich eindeutig schreiben als [mm] a_1v_1+a_2v_2+a_3v_3 [/mm] mit [mm] a_i\in \IR. [/mm]

Die Elemente des Raumes V/U haben die Gestalt [mm] v+U=a_1v_1+a_2v_2+a_3v_3+U=a_1v_1+a_2v_2+a_3v_3+. [/mm]

Es ist [mm] a_1v_1+a_2v_2+a_3v_3+ [/mm] = [mm] a_3v_3+ . [/mm]

Also sehen die Elemente des V/U so aus: [mm] \vektor{a\\0\\0}+U [/mm] mit [mm] a\in \IR, [/mm]
dh. [mm] V/U=\{\vektor{a\\0\\0}+U| a\in \IR\}. [/mm]
[mm] v_3+U [/mm] ist eine Basis des V/U.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]