matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperFinden von Idealen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Finden von Idealen
Finden von Idealen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Finden von Idealen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Mi 11.01.2012
Autor: Sin777

Aufgabe
[mm] R=\{\bruch{a}{b}:a \in \IZ, b \in \IZ \backslash \{0\}, b \not\equiv 0(mod 2)\} [/mm]

Zeige R ist ein Integritätsring und bestimme alle Ideale sowie maximalen Ideale von R.




Dass R ein Integritätsring ist, das ist mir klar.

Für die Ideale habe ich folgende Idee:
Man kann zeigen, dass für jedes feste aber beliebige m,k [mm] \in \IN [/mm] gilt, dass
[mm] M=\{\bruch{a*k}{b*2m+1}:a,b \in \IZ, b \not= 0\} [/mm]
ein Ideal ist.
Ich bin mir aber nun nicht sicher, ob es noch andere Ideale gibt. Außerdem muss ich noch die maximalen Ideale finden, also zeigen, dass (R/M,+,*) ein Körper ist. Muss ich denn überhaupt noch zeigen, dass (R/M,+) eine kommutative Gruppe ist? Und ist (R/M,*) nicht auch immer eine kommutative Gruppe? Dann wären alle Ideale auch maximale Ideale.

        
Bezug
Finden von Idealen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Mi 11.01.2012
Autor: wieschoo


> [mm]R=\{\bruch{a}{b}:a \in \IZ, b \in \IZ \backslash \{0\}, b \not\equiv 0(mod 2)\}[/mm]
>  
> Zeige R ist ein Integritätsring und bestimme alle Ideale
> sowie maximalen Ideale von R.
>  Dass R ein Integritätsring ist, das ist mir klar.
>  
> Für die Ideale habe ich folgende Idee:
>  Man kann zeigen, dass für jedes feste aber beliebige m,k
> [mm]\in \IN[/mm] gilt, dass
> [mm]M=\{\bruch{a*k}{b*(2m+1)}:a,b \in \IZ, b \not= 0\}[/mm]
> ein Ideal ist.
>  Ich bin mir aber nun nicht sicher, ob es noch andere
> Ideale gibt. Außerdem muss ich noch die maximalen Ideale
> finden, also zeigen, dass (M,+,*) ein Körper ist. Muss ich

Wenn M ein maximales Ideal des kommutativen Ringes R mit 1 ist, dann ist doch R/M ein Körper.

Wieso soll dann (M,+,*) ein Körper sein?

Bezug
                
Bezug
Finden von Idealen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:05 Mi 11.01.2012
Autor: Sin777

Ich habe mich verschrieben. Ich meinte natürlich (R/M,+,*) und verbessere es gleich.

Bezug
        
Bezug
Finden von Idealen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:08 Mi 11.01.2012
Autor: Sin777

Außerdem ist mir nicht richtig klar, wie die Verknüpfung + auf (R/J,+) definiert ist...

Bezug
        
Bezug
Finden von Idealen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Mi 11.01.2012
Autor: felixf

Moin!

> [mm]R=\{\bruch{a}{b}:a \in \IZ, b \in \IZ \backslash \{0\}, b \not\equiv 0(mod 2)\}[/mm]
>  
> Zeige R ist ein Integritätsring und bestimme alle Ideale
> sowie maximalen Ideale von R.
>  
> Dass R ein Integritätsring ist, das ist mir klar.
>  
> Für die Ideale habe ich folgende Idee:
>  Man kann zeigen, dass für jedes feste aber beliebige m,k
> [mm]\in \IN[/mm] gilt, dass
> [mm]M=\{\bruch{a*k}{b*(2m+1)}:a,b \in \IZ, b \not= 0\}[/mm]
> ein Ideal ist.

Das ist nichtmals eine Teilmenge von $R$. Waehle $a = 1$, $b = 2 k$, und $k, m$ beliebig. Dann ist [mm] $\frac{a k}{b (2m+1)} [/mm] = [mm] \frac{1}{2 (2m+1)} \not\in [/mm] R$, da $2 (2m+1) [mm] \equiv [/mm] 0 [mm] \pmod{2}$ [/mm] ist.

Schau dir doch erstmal an, welche Elemente in $R$ Einheiten sind und welche nicht. Ueberlege dir, das es (bis auf Assoziiertheit) ein irreduzibles Element gibt (und das dieses prim ist). Damit kannst du dann zeigen, dass die von den Potenzen dieses Elementes erzeugten Hauptideale alle Ideale (ungleich dem Nullideal) in $R$ sind.

LG Felix


Bezug
                
Bezug
Finden von Idealen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:36 Mi 11.01.2012
Autor: Sin777

Ich habe die Klammern falsch gesetzt. Jetzt stimmt es aber :)
Also im Nenner steht 2bm+1

Was hat das mit den Einheiten zu tun?

Bezug
                        
Bezug
Finden von Idealen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:39 Do 12.01.2012
Autor: hippias

Da echte Ideale keine Einheiten enthalten, ist es nuetzlich zu wissen, welche Elemente man zur Erzeugung von echten Idealen nicht verwenden darf.

Bezug
                                
Bezug
Finden von Idealen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:12 Do 12.01.2012
Autor: felixf

Moin,

> Da echte Ideale keine Einheiten enthalten, ist es nuetzlich
> zu wissen, welche Elemente man zur Erzeugung von echten
> Idealen nicht verwenden darf.

und in einem Integritaetsbereich sind die von zwei Elementen erzeugten Hauptideale genau dann gleich, wenn die Elemente assoziiert sind, d.h. wenn das eine gleich dem anderen mal eine Einheit ist.

LG Felix


Bezug
                        
Bezug
Finden von Idealen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:59 Do 12.01.2012
Autor: Sin777

Mit der Anpassung dürften doch die beschriebenen Mengen alle Ideale sein, oder?

Bezug
                                
Bezug
Finden von Idealen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:54 Fr 13.01.2012
Autor: felixf

Moin!

> Mit der Anpassung dürften doch die beschriebenen Mengen
> alle Ideale sein, oder?

Sie sind additiv abgeschlossen, aber erfuellen nicht umbedingt die Schluckeigenschaft.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]