matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenFixgerade
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Abbildungen und Matrizen" - Fixgerade
Fixgerade < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixgerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Mo 23.03.2009
Autor: tj09

Aufgabe 1
Gegeben ist die affine Abbildung [mm] \alpha [/mm] : [mm] \vec{x'} [/mm] = [mm] \pmat{ 2 & 10 \\ 6 & -2 } [/mm] * [mm] \vec{x} [/mm]

Zeigen Sie, dass die Gerade g : [mm] \vec{x} [/mm] = t * [mm] \vektor{5 \\ 3} [/mm] t [mm] \in \IR [/mm] Fixgerade von [mm] \alpha [/mm] ist.

Bestimmen Sie alle Punkte, die durch [mm] \alpha [/mm] auf sich selbst abgebildet werden.  

Aufgabe 2
Die Gerade h : [mm] \vec{x} [/mm] = [mm] \vektor{2 \\ 1} [/mm] + s [mm] \vektor{-2\\ 1} [/mm] s [mm] \in \IR [/mm] wird durch [mm] \alpha [/mm] auf die Gerade h' abgebildet.
Bestimmen Sie eine Gleichung der Bildgeraden h',  

Mit Fixgeraden habe ich keine Erfahrungen und verstehe das ganze noch nicht wirklich...

Wer kann mir helfen?

        
Bezug
Fixgerade: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Mo 23.03.2009
Autor: M.Rex

Hallo

Eine Fixgerade ist eine Garde, die auf sich selber abgebildet wird:

also:
[mm] g:\vec{x}=t*\vektor{5\\3}=\vektor{5t\\3t} [/mm]

Und jetzt bestimme mal die Bilder dieses Vektors unter
[mm] \alpha:\vec{x'}=\pmat{2&10\\6&-2}*\vec{x} [/mm]

Also:
[mm] \vec{x'}=\pmat{2&10\\6&-2}*\vektor{5t\\3t} [/mm]

Und es sollte wieder die Gerade g als [mm] \vec{x'} [/mm] herauskommen.


Bei b)
h [mm] :\vec{x}=\vektor{2\\1}+\vektor{-2\\ 1}=\vektor{2-2s\\1+s} [/mm]

Und jetzt berechne mal:
[mm] \vec{x'}=\pmat{2&10\\6&-2}*\vektor{(2-2s)\\(1+s)} [/mm]

Das Ergebnis für vec{x'} ist deine Bildgerade h'

Marius

Bezug
                
Bezug
Fixgerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:09 Mo 23.03.2009
Autor: tj09

hmm bei der Gerade kommt da dann nicht [mm] \vektor{40t \\ 9t} [/mm] raus?

Also 2*5 + 10*3  und 3*5 + (-2)*3


Für h' habe ich= [mm] \vektor{14\\ 16} [/mm] + s [mm] \vektor{6\\ -14} [/mm]



Bezug
                        
Bezug
Fixgerade: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Mo 23.03.2009
Autor: MathePower

Hallo tj09,

> hmm bei der Gerade kommt da dann nicht [mm]\vektor{40t \\ 9t}[/mm]
> raus?


Hier muß es doch

[mm]\vektor{40t \\ \red{24}t}=8*\vektor{5t \\ 3t} [/mm]

heißen.


>
> Also 2*5 + 10*3  und 3*5 + (-2)*3


[mm]\red{6}*5 + (-2)*3 [/mm]


>
>
> Für h' habe ich= [mm]\vektor{14\\ 16}[/mm] + s [mm]\vektor{6\\ -14}[/mm]


[mm]\vektor{14\\ \red{10}}[/mm] + s [mm]\vektor{6\\ -14}[/mm]


>  
>  


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]