matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisFixpunktemenge abhängig von
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Fixpunktemenge abhängig von
Fixpunktemenge abhängig von < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunktemenge abhängig von: Spur, SL(2,C), h_(A)(z)
Status: (Frage) überfällig Status 
Datum: 05:35 Di 11.10.2011
Autor: kushkush

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Sei $A\in SL(2,\IC))$. Man untersuche die Fixpunktmenge $\{z \in \overline{\IC}} | h_{A}(z) = z\}$ in Abhängigkeit von der Spur von A.

Hallo,

bezeichne tr(A) die Spur der Matrix A und

sei nun

$ h_{A}(z):= \frac{az+b}{cz+d} \in \IC(z)$  ,

die dazugehörige komplexe Matrix :

$ A= \vektor{a& b \\ c & d}$

Behauptung: Sei $h_{A}(z)$ nicht $id$ , und  sei $A \in SL(2,\IC)$ , dann sind 3 Fälle zu unterscheiden:
$i) $|tr(A)|< 2$ , ii) $|tr(A)|=2$, und iii) $|tr(A)|>2$


Beweis: Da $det A=1$ betrachte man die Fälle $a) c=0$ oder $b) c\ne 0$ .

1. Fall: Ist c = 0, dann ist sicher $\infty$ ein Fixpunkt von $h_{A}$. Ausserdem ist $det(A)=ad = 1 \Rightarrow a=\frac{1}{d}$. Daraus folgt $h_{A}(z) = a^{2}z+ab$ Damit folgt für die Spur von A :$tr(A) = a+ \frac{1}{a}$.

(\alpha ) Sei nun  $a=1$ oder $a=-1$, $b\ne 0$.  Dann ist $|tr(A)|=2$. Für $h_{A}(z) = a^{2}z+ab = z$ existiert ausser $\infty$ kein Fixpunkt.
(\beta ) Sei $a\ne \pm 1$, dann gilt: $|tr(A)|>2 $. Mit $h_{A}(z)=a^{2}z+ab=z \gdw z=\frac{ab}{1-a^{2}}$ folgt dass es hier zwei Fixpunkte gibt, nämlich: $\frac{ab}{1-a^{2}}$ und $\infty$.


2. Fall: Ist $c\ne 0$. Wenn $c\ne 0 $  dann gilt zum Finden der Fixpunkte $h_{A}(z) = az+\frac{b}{cz}+d = z \Rightarrow cz^{2}+(d-a)z-b=0$.

Dabei ist die Diskriminante D der quadratischen Gleichung:

$(d-a)^{2}+4bc = d^{2}-2ad+a^{2}+4bc = (d+a)^{2}-4ad+4bc = (tr(A)^{2}-4\underbrace{(ad-bc)}_{detA=1} = tr(A)^{2}-4$

(\alpha) Ist jetzt D=0, dann ist $tr(A)=4$, also $|tr(A)|=2$. Daraus folgt auch, dass es nur einen Fixpunkt gibt.

(\beta ) Ist D>0 , dann ist $tr(A)^{2} - 4 > 0$ , also muss auch $|tr(A)|> 2$ Also gibt es, weil es dann 2 Lösungen für die quadratische Gleichung gibt, auch 2 Fixpunkte.

(\gamma ) Ist D<0 , dann ist auch $|tr(A)|<2$. Gibt zwei komplex konjugierte Fixpunkte, aber einer liegt nicht im Definitionsbereich, also nur ein Fixpunkt.



Ist das so richtig?

Danke für jegliche Hilfestellung!!



Gruss
kushkush

        
Bezug
Fixpunktemenge abhängig von: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:20 Do 13.10.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]