matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenFkt. in Parametergl.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Fkt. in Parametergl.
Fkt. in Parametergl. < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fkt. in Parametergl.: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:11 So 16.09.2007
Autor: pleaselook

Aufgabe
Die Bewegung eines Punktes wird durch die Parametergl.
[mm] x(t)=t-\sin(t) [/mm]
[mm] y(t)=1-\cos(t), (t\geq [/mm] 0)

1)Zu welchem Zeitpunkt [mm] t\geq0 [/mm] berührt der Punkt die x-Achse.
2)Länge der Kurve im Intervall [mm] [0,2\pi] [/mm]

Abend. Ich glaube was ich zu 1) hab müßte reichen. Ist den der Ansatz bei 2) richtig?

1)
Reicht es hier zu untersuchen y(t)=0 [mm] \gdw \cos(t)=1 \gdw t=2k\pi [/mm] mit [mm] k\in \IN_0 [/mm]

Kann man auch rel. einfach eine Funktion f(t) finden?

2)
[mm] x'(t)=1-\cos(t) [/mm]
[mm] y'(t)=\sin(t) [/mm]
[mm] L=\integral_0^{4\pi}{\wurzel{(1-\cos(t))^2+(-\sin(t))^2}}dt=\integral_0^{2\pi}\wurzel{{2-2\cos(t)}}dt [/mm]


        
Bezug
Fkt. in Parametergl.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 So 16.09.2007
Autor: leduart

Hallo
alles richtig.
Was du mit f(t) meinst weiss ich nicht
es gilt, [mm] /x-t)^2+(y-1)^2=1 [/mm]
d.h. ein Kreis mit Radius 1 rollt  auf der x-Achse ab.
Der Punkt, der sich bewegt ist ein Punkt auf dem Kreis.
meinst du das mit f(t)? die Kurve ist ne Zykloide .
für das Integral benutze: 2sin^2x=1-cos(2x)
Gruss leduart

Bezug
                
Bezug
Fkt. in Parametergl.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:44 So 16.09.2007
Autor: pleaselook

Das freut mich und danke für deine Mühen.

Wie komme ich auf die Gl. [mm] (x-t)^2+(y-1)^2=1 [/mm]

Bezug
                        
Bezug
Fkt. in Parametergl.: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 So 16.09.2007
Autor: Herby

Hi,

ich möcht mich ja nun nicht zu weit aus dem Fenster lehnen, aber in der Aufgabe war x und y gegeben und ein bisschen umformen ergibt:

x-t=-sin(t) und y-1=-cos(t)

außerdem ist:

[-sin(t)]²+[-cos(t)]²=1

was ja bei deiner Aufgabe auch zutrifft ;-)



Liebe Grüße
Herby

Wenn es nicht stimmen sollte, dann bitte korrigieren :-)

Bezug
                                
Bezug
Fkt. in Parametergl.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:12 So 16.09.2007
Autor: pleaselook

yupp. hast recht.
Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]