matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationFläche einer Astroide
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Fläche einer Astroide
Fläche einer Astroide < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fläche einer Astroide: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:00 Di 05.08.2014
Autor: Manu3911

Aufgabe
Die spezielle Astroide hat die Gleichungen [mm] x = r*cos^3 \varphi , y=r*sin^3 \varphi [/mm]. Wie großist die von ihr eingeschlossene Fläche?

Hallo zusammen,

ich komme bei der Aufgabe nicht weiter. Was eine Astroide ist, ist mir klar. Die Fläche finde ich durch integrieren raus, auch klar. Aber die Astroide ist ja, soweit ich das sehe, in Polarkoordinaten gegeben und ich hab keine Formel die mir sagt, wie ich den Flächeninhalt von Graphen in Polarkoordiantenform berechne. Gibt es da überhaupt eine "Standardformel"?
Und dann stellt sich mir die Frage, ob ich nur nach [mm] \varphi [/mm] integriere und das r als Konstante betrachte oder ob ich ein Doppelintegral berechnen muss?
Wäre echt nett, wenn ihr mir wieder weiterhelfen würdet!

Danke!
Manu

        
Bezug
Fläche einer Astroide: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Di 05.08.2014
Autor: fred97


> Die spezielle Astroide hat die Gleichungen [mm]x = r*cos^3 \varphi , y=r*sin^3 \varphi [/mm].
> Wie großist die von ihr eingeschlossene Fläche?
>  Hallo zusammen,
>  
> ich komme bei der Aufgabe nicht weiter. Was eine Astroide
> ist, ist mir klar. Die Fläche finde ich durch integrieren
> raus, auch klar. Aber die Astroide ist ja, soweit ich das
> sehe, in Polarkoordinaten gegeben und ich hab keine Formel
> die mir sagt, wie ich den Flächeninhalt von Graphen in
> Polarkoordiantenform berechne. Gibt es da überhaupt eine
> "Standardformel"?

Schau mal hier:

https://matheraum.de/forum/Flaecheninhalt_einer_Asteroide/t704730


>  Und dann stellt sich mir die Frage, ob ich nur nach
> [mm]\varphi[/mm] integriere und das r als Konstante betrachte


Ja, r ist fest.

FRED


>  oder
> ob ich ein Doppelintegral berechnen muss?
>  Wäre echt nett, wenn ihr mir wieder weiterhelfen
> würdet!
>  
> Danke!
>  Manu


Bezug
                
Bezug
Fläche einer Astroide: Gelöst
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:44 Di 05.08.2014
Autor: Manu3911

Vielen Dank, mit dem Hinweis dort hab ichs genau hinbekommen!

Gruß Manu

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]