matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesFlächenberechnungsaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis-Sonstiges" - Flächenberechnungsaufgabe
Flächenberechnungsaufgabe < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenberechnungsaufgabe: aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 19:08 Sa 09.02.2008
Autor: noobo2

Aufgabe
also das ist die aufgabe nummer 1 c) des mathewettbewerbs der stufe 11 2008(Probeklausur) (www.z-f-m.de -> Downloads)

Das Problem ist, dass ich ne andere Lösung raus hab, als die Lösung welche nun vom herausgegeben wurde.
Ich habe noch den gleichen Schnittpunkt der beiden graden also [mm] s(\bruch{b*a}{b+a}/\bruch{b*a}{b+a}) [/mm] und dann hab ich halt weitergerechnet.
Es ist ja recht bald deutlich, dass die Nullstelle der einen Gerade der y-Achensabschnitt der anderen Gerade ist. NUn soll ja die gesamte sraffierte Fläche errechnet werden und ich hab sie halt in ein QUadrat und zwei (gleich große) Dreicecke unterteilt. Die nullstelle der Gerade g lautet (a/0) also hab ich weitergemacht um die komplette Fläche zu errechnen:

[mm] (a-(\bruch{b*a}{b+a}))*(\bruch{b*a}{b+a}) [/mm] ( ergibt die Fläche beider Dreiecke, da diese ja beide Rechtwinklig sind und ((ab)/2)*2 gilt
wenn ich den Term ausrechne komem ich auf
[mm] \bruch{a^3*b}{(a+b)^2} [/mm]
und dazu kommt jetzt noch das mittige quadrat also [mm] (\bruch{b*a}{b+a})^2 [/mm]
ich hab auch mal eingesetzt und komm mit meiner formel aufs richtige ergebnis..kann das jemand bestätigen oder mir sagen was ich falsch gemacht hab??

        
Bezug
Flächenberechnungsaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:36 Sa 09.02.2008
Autor: noobo2

sry bin allen draufgekommen mein ansatz stimtm die habe meinen term nur noch zusammengefasst

Bezug
        
Bezug
Flächenberechnungsaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Sa 09.02.2008
Autor: weduwe

ich habe es nur mehr im kopf, aber wenn du dir die figur anschaust, siehst du, dass es sich um 2 kongruente dreiecke handelt> also das ist die aufgabe nummer 1 c) des mathewettbewerbs
> der stufe 11 2008(Probeklausur) (www.z-f-m.de ->
> Downloads)
>  Das Problem ist, dass ich ne andere Lösung raus hab, als
> die Lösung welche nun vom herausgegeben wurde.
>  Ich habe noch den gleichen Schnittpunkt der beiden graden
> also [mm]s(\bruch{b*a}{b+a}/\bruch{b*a}{b+a})[/mm] und dann hab ich
> halt weitergerechnet.
>  Es ist ja recht bald deutlich, dass die Nullstelle der
> einen Gerade der y-Achensabschnitt der anderen Gerade ist.
> NUn soll ja die gesamte sraffierte Fläche errechnet werden
> und ich hab sie halt in ein QUadrat und zwei (gleich große)
> Dreicecke unterteilt. Die nullstelle der Gerade g lautet
> (a/0) also hab ich weitergemacht um die komplette Fläche zu
> errechnen:
>  
> [mm](a-(\bruch{b*a}{b+a}))*(\bruch{b*a}{b+a})[/mm] ( ergibt die
> Fläche beider Dreiecke, da diese ja beide Rechtwinklig sind
> und ((ab)/2)*2 gilt
> wenn ich den Term ausrechne komem ich auf
> [mm]\bruch{a^3*b}{(a+b)^2}[/mm]
>  und dazu kommt jetzt noch das mittige quadrat also
> [mm](\bruch{b*a}{b+a})^2[/mm]
>  ich hab auch mal eingesetzt und komm mit meiner formel
> aufs richtige ergebnis..kann das jemand bestätigen oder mir
> sagen was ich falsch gemacht hab??

ich habe es nur mehr im kopf, aber wenn du dir die figur anschaust, siehst du, dass es sich um 2 kongruente dreiecke handelt.

eines davon hat die grundlinie [mm]a[/mm] und die höhe [mm]h =y_S[/mm].

damit bekommst du  [mm] A=\frac{a²b}{a+b} [/mm] wie angegeben.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]