matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächenbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Flächenbestimmung
Flächenbestimmung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenbestimmung: Gleichsetzungsprobleme
Status: (Frage) beantwortet Status 
Datum: 10:22 So 10.12.2006
Autor: Velvet

Aufgabe
Berechne den Inhalt der von den Graphen von f und g eingeschlossenen Fläche.
[mm] f(x)=x^3-4x [/mm]  ;  [mm] g(x)=x^2-4 [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

mir ist der Ansatz zur Lösung dieser Aufgabe bekannt, jedoch habe ich schon beim ersten Schritt der Schnittstellenbestimmung Probleme.

Ich muss die beiden gegebenen Funktionen gleichsetzen, um die Schnittstellen zu finden.

[mm] x^3-4x=x^2-4 (-x^2, [/mm] +4)

[mm] x^3-x^2-4x+4=0 [/mm]

Das eigentliche Ziel ist die Gleichung in die pq-Normalform zu bringen, allerdings kann ich wegen der "4" nicht ausklammern, was ich normalerweise getan hätte.
Deshalb habe ich es mit der 1.Ableitung versucht

[mm] 3x^2-2x-4 [/mm]   (:3)

pq-Formel        [mm] x^2 [/mm] -2/3x -4/3

Nach der pq-Formel habe ich unter der Wurzel (16/9 - 4/3) stehen und da die Wurzel aus 4/9 irgendeine lange Dezimalzahl ist, kann das Ergebnis nicht stimmen!

Kann mir vielleicht jemand bitte weiterhelfen? Was habe ich falsch gemacht?


        
Bezug
Flächenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:20 So 10.12.2006
Autor: piet.t

Hallo velvet,
[willkommenmr]

> Hallo,
>  
> mir ist der Ansatz zur Lösung dieser Aufgabe bekannt,
> jedoch habe ich schon beim ersten Schritt der
> Schnittstellenbestimmung Probleme.
>  
> Ich muss die beiden gegebenen Funktionen gleichsetzen, um
> die Schnittstellen zu finden.

[ok]Das ist schon mal richtig.

>  
> [mm]x^3-4x=x^2-4 (-x^2,[/mm] +4)
>  
> [mm]x^3-x^2-4x+4=0[/mm]
>  
> Das eigentliche Ziel ist die Gleichung in die pq-Normalform
> zu bringen, allerdings kann ich wegen der "4" nicht
> ausklammern, was ich normalerweise getan hätte.

Bei einer allgemeinen Gleichung dritten Grades wird das mit der pq-Normalform auch nicht immer klappen - da muss man dann einen kleinen Umweg gehen. DAzu gleich mehr.

>  Deshalb habe ich es mit der 1.Ableitung versucht
>  
> [mm]3x^2-2x-4[/mm]   (:3)
>  
> pq-Formel        [mm]x^2[/mm] -2/3x -4/3
>  
> Nach der pq-Formel habe ich unter der Wurzel (16/9 - 4/3)
> stehen und da die Wurzel aus 4/9 irgendeine lange
> Dezimalzahl ist, kann das Ergebnis nicht stimmen!

Da hast Du recht! Dein Ansatz besagt, dass die Funktionen f und g an der Stelle x den gleichen Funktionswert haben. Das bedeutet aber noch lange nicht, dass dort dann auch die Ableitungen gleich sein müssen - und das wäre ja die Aussage, wenn Du die Gelichung einfach ableitest.

Wie kommt man dann auf die Lösung?
Wenn man eine Gleichung 3. Grades nicht durch einfache Umformungen (wie z.B. Ausklammern) auf einen kleineren Grad reduzieren kann, dann versucht man in der Regel, erst mal eine Lösung zu erraten. In der Schul funktioniert das meistens (so sind die Aufgaben ja gebaut), probiere doch einfach mal ein paar der ganzen Zahlen von -4 bis 4 durch!
Hat man nun die erste Lösung gefunden (z.B. a), dann kann man durch Polynomdivision den Grad der verbleibenden Gleichung um 1 reduzieren:
[mm](x^3-x^2-4x+4):(x-a)=????[/mm]
Ist a Lösung, dann geht die Polynomdivision immer auf und man kann die ursprüngliche Gleichung schreiben als
[mm](????)*(x-a)=0[/mm]
Und dann findet man weitere Lösungen, indem man ????=0 betrachtet.

Versuch das einfach mal!

Gruß

piet

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]