matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisFolge rausfinden, Konvergenz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Folge rausfinden, Konvergenz
Folge rausfinden, Konvergenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge rausfinden, Konvergenz: Frage
Status: (Frage) beantwortet Status 
Datum: 22:43 Do 02.06.2005
Autor: Marianne

Hallo!!
ICh habe ein paar aufgaben mit folgen bekommen und bin bei manchen nicht so richtig vorangekommen.
Vielleicht kann mir jemand helfen.
Ich habe bei den folgenden 2 Reihen raus, dass sie gegen Null konvergieren, stimmt dies?
[mm] \summe_{i=1}^{\infty}\bruch{i!}{i^{i}} [/mm]
[mm] \summe_{i=0}^{\infty}\bruch{i^{4 }}{3^{i}} [/mm]
und beim finden einer Reihe habe ich so meine Probleme:
wir sollen [mm] a_{k} [/mm] finden für
[mm] \bruch{1}{m-z}=\summe_{k=0}^{\infty}a_{k}z^{k} [/mm]
|z| [mm] \not= [/mm] |m|
für |z| < |m| kann man umformen [mm] \bruch{1}{m}*\bruch{1}{1-\bruch{z}{m}} [/mm]
für |z|  >|m|kann man umformen [mm] \bruch{-1}{z}*\bruch{1}{1-\bruch{m}{z}} [/mm]

[mm] m,z,a_{k}\in\IC^{*} [/mm]
[mm] a_{k}\in\IC [/mm]
Bei dieser Aufgabe komme ich nicht weiter und bin deshalb für Hilfe sehr dankbar.

Ich habe diese Frage inkeinem andren Forum gestellt.

        
Bezug
Folge rausfinden, Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 Fr 03.06.2005
Autor: banachella

Hallo!

Weil die ersten beiden Reihen nur positive Glieder haben, werden sie nicht gegen $0$ konvergieren...
Für die dritte Reihe: Deine Umformungen sind genau der richtige Weg! Jetzt benutze, dass für $|q|<1$ gilt: $ [mm] \summe_{n=0}^\infty q^n=\bruch{1}{1-q}$! [/mm]

Gruß, banachella


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]