matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteFolgen und Reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - Folgen und Reihen
Folgen und Reihen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen und Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Mi 07.11.2007
Autor: in.flames

Aufgabe
a) an= [mm] 3,5*1,2^n-1 [/mm] -Handelt es sich um eine Verdopplung?
b) Welche Nummer hat das angegebene Folgenglied?
an= [mm] 9*4^n-1 [/mm] ; 9.663.676.415
c)Berechne: 60+ 12 + 2,4 + 0,48

Achtung! Das -1 bei a) und b) gehört mit in den Exponenten!!!

Hallo Leute,

ich verstehe leider b) und c) nicht, gibt es dort Formeln?
a) ist mir klar, ich setze einfach eine Zahl ein und schau nach ;).

Grüße
Maiko

        
Bezug
Folgen und Reihen: Hinweise
Status: (Antwort) fertig Status 
Datum: 17:39 Mi 07.11.2007
Autor: Loddar

Hallo Maiko!


> a) an= [mm]3,5*1,2^{n-1}[/mm] -Handelt es sich um eine Verdopplung?

Was hast Du denn erhalten?


> b) Welche Nummer hat das angegebene Folgenglied?
> [mm] a_n=[/mm]  [mm]9*4^{n-1}[/mm] ; 9.663.676.415

Hier die beiden Terme gleichsetzen und nach $n_$ auflsöen:
[mm] $$9*4^{n-1} [/mm] \ = \ 9663676415$$
Zunächst durch $9_$ teilen und anschließend einen MBLogarithmus anwenden.


> c) Berechne: 60+ 12 + 2,4 + 0,48

Das reine Zusammenzählen dieser Summe kann doch nicht das Problem sein, oder?
Oder ist hier vielmehr eine Folgen- bzw. Reihen vorschrift gesucht?

Sieh Dir die Summanden mal genauer an: da ist jedes Glied immer das vorherige Glied mal [mm] $\bruch{1}{5}$ [/mm] ...


Gruß
Loddar


Bezug
                
Bezug
Folgen und Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Mi 07.11.2007
Autor: in.flames

Sehr vielen Dank Loddar,

bei c) befindet sich ein... nach der Additionsreihe.
Ich soll also ein annährendes Ergebnis angeben, eine Formel müsste es dort geben...-

danke
Maiko

Bezug
                        
Bezug
Folgen und Reihen: geometrische Reihe
Status: (Antwort) fertig Status 
Datum: 17:49 Mi 07.11.2007
Autor: Loddar

Hallo Maiko!


Dann handelt es sich hier also um eine []geometrische Reihe. Diese hat die Formel:
[mm] $$a_0+a_0*q+a_0*q^2+a_0*q^3+...+a_0*q^{n-1} [/mm] \ = \ [mm] a_0*\bruch{1-q^n}{1-q}$$ [/mm]

Für $|q| \ < \ 1$ ergibt sich für die unendliche Reihe der Wert [mm] $a_0*\bruch{1}{1-q}$ [/mm] .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]