matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInformatik-TrainingFormale Sprachen: Trios
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Informatik-Training" - Formale Sprachen: Trios
Formale Sprachen: Trios < Training < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Informatik-Training"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formale Sprachen: Trios: Trios (1)
Status: (Übungsaufgabe) Aktuelle Übungsaufgabe Status (unbefristet) 
Datum: 09:43 Mo 13.02.2006
Autor: mathiash

Aufgabe
Eine Sprachfamilie [mm] \mathcal{C}=\{L_i,i\in I\} [/mm] mit [mm] L_i\subseteq\Sigma^{\star} (\Sigma [/mm]  ein endliches Alphabet)
heißt Trio, falls mindestens eines der [mm] L_i [/mm] nicht-leer ist und [mm] \mathcal{C} [/mm] abgeschlossen ist unter Schnittmengenbildung mit einer regulären Menge, inversen Homomorphismen und [mm] \epsilon-freien [/mm] Homomorphismen.

Ist [mm] \mathcal{C} [/mm] unter allen Homomorphismen abgeschlossen, so heißt [mm] \mathcal{C} [/mm] volles Trio.

(a) Zeige: Die Klasse der regulären Sprachen, die Klasse der kontextfreien Sprachen und die der rekursiv aufzählbaren Sprachen sind volle Trios.

(b) Zeige: Die Klasse der kontextsensitiven Sprachen und die Klasse der rekursiven Sprachen sind Trios, aber keine
vollen Trios.

(c) Jedes volle Trio enthält alle regulären Mengen. Jedes Trio enthält alle [mm] \epsilon-freien [/mm] regulären Mengen.  

Hallo zusammen,

hiermit startet eine Sequenz von Aufgaben zu Trios und vollen Trios, sog. abstrakten Sprachfamilien. Thematisch interessant  mag dies vor allem fuer diejenigen sein, die zB gerade  ;-)  einen Kurs ueber formale Sprachen belegt
haben und jetzt noch auf gepflegte Art ein bißchen weitermachen wollen.

Grundlage ist das entsprechende Kapitel aus dem Buch von Hopcroft und Ullman ''Introduction to automata theory, languages and computation''.

Einige Definitionen:

(i) [mm] \mathcal{C} [/mm] ist abgeschlossen unter Schnittmengenbildung mit regulären Sprachen genau dann, wenn
fuer jedes [mm] A\in\mathcal{C} [/mm] und jede reguläre Sprache L auch [mm] A\cap L\in\mathcal{C} [/mm] gilt.

(ii) Ein Homomorphismus (genauer: String-Homomorphismus) ist eine Abbildung
[mm] h\colon\Sigma^{\star}\to\Sigma^{\star}, [/mm] die verträglich mit der Konkatenation ist, d.h. fuer alle [mm] x,y\in\Sigma^{\star} [/mm]
ist h(xy)=h(x)h(y).

Das heisst nichts anderes,. als dass h bereits durch die Bilder [mm] h(a),a\in\Sigma [/mm] vollstaendig bestimmt ist.

(iii) Solch ein Stringhomomorphismus h heisst [mm] \epsilon-frei, [/mm] falls fuer alle [mm] a\in\Sigma h(a)\neq\epsilon [/mm]
gilt.

Hierbei bezeichnet [mm] \epsilon [/mm] den leeren String, also den einzigen String der Laenge 0.

(iv) [mm] \mathcal{C} [/mm] heisst abgeschlossen unter inversen Homomorphismen, falls fuer alle [mm] L\in\mathcal{C} [/mm]
und alle String-Homomorphismen [mm] h\colon\Sigma^{\star}\to\Sigma^{\star} [/mm] auch [mm] h^{-1}(L)\in\mathcal{C} [/mm] gilt.

Entsprechend heisst [mm] \mathcal{C} [/mm] abg. unter Homomorphismen, falls fuer alle Homomorphismen h und alle
[mm] L\in\mathcal{C} [/mm] auch [mm] h(L)\in\mathcal{C} [/mm] gilt.

Viel Spass beim Bearbeiten.

Gruss,

Mathias

Ansicht: [ geschachtelt ] | ^ Forum "Informatik-Training"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]