matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationFourier-Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Fourier-Transformation" - Fourier-Reihe
Fourier-Reihe < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourier-Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Fr 29.01.2010
Autor: pandabaer

Aufgabe
Fourierreihen
Bestimmen Sie die Fourier-Koeffizienten der Funktionen
(a) f(x) = 1 + 2 sin(9x) + 3 cos(5x).
(b) f(x) = sin x cos x

Hallo,

ich habe diese aufgabe zu lösen, weiß aber nicht was ich hier tun muss. hab im skript und in formelsammlungen nachgeschaut und gesehen, dass es für [mm] a_{0}, a_{n} [/mm] und b{n} formeln gibt:

[mm] a_{0}=\bruch{1}{\pi}\integral_{-\pi}^{\pi}{f(x) dx} [/mm]
[mm] a_{n}=\bruch{1}{\pi}\integral_{-\pi}^{\pi}{f(x) cos(kx) dx} [/mm]
[mm] b{n}=\bruch{1}{\pi}\integral_{-\pi}^{\pi}{f(x) sin(kx) dx} [/mm]


muss ich diese hier anwenden oder kann ich evtl die koeffizienten (bei aufgabe a) zumindest) einfach ablesen?

f(x) = [mm] \bruch{a_{0}}{2} [/mm] + [mm] \summe_{i=1}^{n}[ a_{n} [/mm] sin(kx) [mm] +b_{n} [/mm] cos(kx)]

mfg pandabaer

        
Bezug
Fourier-Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Fr 29.01.2010
Autor: MathePower

Hallo pandabaer,

> Fourierreihen
>  Bestimmen Sie die Fourier-Koeffizienten der Funktionen
>  (a) f(x) = 1 + 2 sin(9x) + 3 cos(5x).
>  (b) f(x) = sin x cos x
>  Hallo,
>  
> ich habe diese aufgabe zu lösen, weiß aber nicht was ich
> hier tun muss. hab im skript und in formelsammlungen
> nachgeschaut und gesehen, dass es für [mm]a_{0}, a_{n}[/mm] und
> b{n} formeln gibt:
>  
> [mm]a_{0}=\bruch{1}{\pi}\integral_{-\pi}^{\pi}{f(x) dx}[/mm]
>  
> [mm]a_{n}=\bruch{1}{\pi}\integral_{-\pi}^{\pi}{f(x) cos(kx) dx}[/mm]
>  
> [mm]b{n}=\bruch{1}{\pi}\integral_{-\pi}^{\pi}{f(x) sin(kx) dx}[/mm]
>  
>
> muss ich diese hier anwenden oder kann ich evtl die
> koeffizienten (bei aufgabe a) zumindest) einfach ablesen?


Ja, bei a) kannst Du die einfach ablesen.


>
> f(x) = [mm]\bruch{a_{0}}{2}[/mm] + [mm]\summe_{i=1}^{n}[ a_{n}[/mm] sin(kx)
> [mm]+b_{n}[/mm] cos(kx)]
>  
> mfg pandabaer


Gruss
MathePower

Bezug
        
Bezug
Fourier-Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Fr 29.01.2010
Autor: leduart

Hallo
Die erste fkt ist schon ihre eigene Fourrierreihe, die zweite auch, wenn du sie in einen sin umformst. Du musst also gar nichts tun, es sei denn du hast noch ein Intervall zusätzlich gegeben, so dass die Periode kleiner ist als die der Funktionen.
Gruss leduart

Bezug
                
Bezug
Fourier-Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Fr 29.01.2010
Autor: pandabaer

nein ich habe nichts weiter gegeben.
es ist also bei aufgabe a: [mm] a_{0}= [/mm] 2 , [mm] a_{n}=2 [/mm] , [mm] b_{n}=3 [/mm]

ist es also egal welche zahl in sin vor dem x steht? ich dachte das müssen die selben sein?

bei aufgabe b): was muss ich in einen sinus umformen? etwa mit [mm] sin^2=1-cos^2 [/mm] ? oder ist dann cos der koeffizient?

danke für die schnelle antwort!!

Bezug
                        
Bezug
Fourier-Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Fr 29.01.2010
Autor: leduart

Hallo
das ist nicht [mm] a_n [/mm] und [mm] b_n [/mm] sondern [mm] a_9 [/mm] und [mm] b_6 [/mm] alle anderen [mm] a_n=0 [/mm]
man sollte wissen sin(x+x)=sin(2x)=2sinx*cosx
Gruss leduart

Bezug
                                
Bezug
Fourier-Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:45 Fr 29.01.2010
Autor: pandabaer

Achso, alles klar, danke!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]