matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationFourier Reihe und Transform.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Fourier-Transformation" - Fourier Reihe und Transform.
Fourier Reihe und Transform. < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourier Reihe und Transform.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:35 Sa 21.04.2012
Autor: diemelli1

Aufgabe
Betrachte die periodische Fortsetzung der [mm] \delta [/mm] -Funktion auf einem Intervall der Länge [mm] \Delta [/mm] , d.h.
f(t) = [mm] \summe_{n\in \IZ} \delta(t-n\Delta). [/mm]

i) Zeige, dass ihre Fourier-Reihe gegeben ist durch
f(t) = [mm] \bruch{1}{\Delta} \summe_{n\in \IZ} e^{\bruch{2\pi int}{\Delta}} [/mm]

ii) Bestimme die Fourier-Transformierte F(w) und ihre Periode im Frequenzbereich.

Hallo zusammen,

ich muss die beiden Aufgaben bis Montag morgen fertig haben und habe leider garkeine Ahnung wie ich überhaupt anfangen muss. In dem Beispiel kann ich leider F(w) aus keiner Tabelle heraus lesen.

...ich hoffe mir kann Jemand einen Tipp geben.....

Grüße
Melli

        
Bezug
Fourier Reihe und Transform.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:02 So 22.04.2012
Autor: rainerS

Hallo Melli!

> Betrachte die periodische Fortsetzung der [mm]\delta[/mm] -Funktion
> auf einem Intervall der Länge [mm]\Delta[/mm] , d.h.
> [mm]f(t) = \summe_{n\in \IZ} \delta(t-n\Delta).[/mm]
>  
> i) Zeige, dass ihre Fourier-Reihe gegeben ist durch
>   [mm]f(t) = \bruch{1}{\Delta} \summe_{n\in \IZ} e^{\bruch{2\pi int}{\Delta}}[/mm]
>  
> ii) Bestimme die Fourier-Transformierte F(w) und ihre
> Periode im Frequenzbereich.
>  Hallo zusammen,
>  
> ich muss die beiden Aufgaben bis Montag morgen fertig haben
> und habe leider garkeine Ahnung wie ich überhaupt anfangen
> muss. In dem Beispiel kann ich leider F(w) aus keiner
> Tabelle heraus lesen.

Du musst die Linearität der Fouriertransfomation benutzen: die Fouriertransformierte von $f(t)$ ist die Summe der Fouriertransformierten der einzelnen Summanden [mm] $\delta(t-n\Delta)$. [/mm] Für einen einzelnen SUmmanden brauchst du keine Tabelle, das Integral kannst du ganz einfach selbst ausrechnen.

Für die Fourierreihe gilt das genauso, z.B. ist in der Berechnung des k-ten Koeffizienten

  [mm] \integral_{-\Delta/2}^{+\Delta/2} \left(\summe_{n\in \IZ} \delta(t-n\Delta)\right) e^{-2\pi ikt\omega} dt = \summe_{n\in \IZ} \integral_{-\Delta/2}^{+\Delta/2} \delta(t-n\Delta)e^{-2\pi ikt\omega} dt [/mm] .

Nun ist dieses Integral nur dann ungleich 0, wenn der Wert [mm] $t-n\Delta=0 \gdw t=n\Delta$ [/mm] im Integrationsintervall liegt, was nur für $n=0$ der Fall ist. So bleibt nur der Summand mit n=0 übrig:

[mm] \integral_{-\Delta/2}^{+\Delta/2} \delta(t)e^{-2\pi ikt\omega} dt =1 [/mm]

mit der Definition der [mm] $\delta$-Distribution. [/mm]

  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]