matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFourierreihe Koeffizienten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Fourierreihe Koeffizienten
Fourierreihe Koeffizienten < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihe Koeffizienten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:12 Mi 16.11.2011
Autor: Wieselwiesel

Aufgabe
Gegeben sei das folgende, zeitkontinuierliche Signal:
x(t) = [mm] sin(2\pi [/mm] t + [mm] \bruch{\pi}{3}) [/mm]

(a) Bestimmen Sie die Periodendauer und die Grundfrequenz ω_{0} von x(t).
(b) Bestimmen Sie die Fourier-Reihendarstellung in komplexer Form. Wieviele Koeffizienten müssen Sie berechnen?

Hallo,

Ich hab Probleme bei diesem Beispiel, bis jetzt hab ich [mm] \omega_{0} [/mm] = 2 [mm] \pi [/mm] und Periodendauer T = 1
Dann hab ich in die Formel x(t) $ [mm] \summe_{k=-\infty}^{\infty} a_{k} [/mm] $*$ [mm] e^{i\omega_{0} k t} [/mm] $ eingesetzt und das bekommen:

x(t) = [mm] -\bruch{i}{2}(e^{i2\pi t}e^{i\bruch{\pi}{3}}-e^{-i2\pi t}e^{-i\bruch{\pi}{3}}) [/mm]

Soweit so gut. Jetzt hab ich aber das Problem, dass ich die Koeffizienten nicht wirklich "rausfiltern" kann. Ich weiss dass sie Index 1 und -1 haben, aber das [mm] e^{i\bruch{\pi}{3}} [/mm] stört mich.
Ich hab die Lösung hier, aber ich kann sie nicht nachvollziehen.
Kann mir jemand auf die Sprünge helfen?

        
Bezug
Fourierreihe Koeffizienten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 Mi 16.11.2011
Autor: MathePower

Hallo Wieselwiesel,

> Gegeben sei das folgende, zeitkontinuierliche Signal:
>  x(t) = [mm]sin(2\pi[/mm] t + [mm]\bruch{\pi}{3})[/mm]
>  
> (a) Bestimmen Sie die Periodendauer und die Grundfrequenz
> ω_{0} von x(t).
>  (b) Bestimmen Sie die Fourier-Reihendarstellung in
> komplexer Form. Wieviele Koeffizienten müssen Sie
> berechnen?
>  Hallo,
>  
> Ich hab Probleme bei diesem Beispiel, bis jetzt hab ich
> [mm]\omega_{0}[/mm] = 2 [mm]\pi[/mm] und Periodendauer T = 1
>  Dann hab ich in die Formel x(t)
> [mm]\summe_{k=-\infty}^{\infty} a_{k} [/mm]*[mm] e^{i\omega_{0} k t}[/mm]
> eingesetzt und das bekommen:
>  
> x(t) = [mm]-\bruch{i}{2}(e^{i2\pi t}e^{i\bruch{\pi}{3}}-e^{-i2\pi t}e^{-i\bruch{\pi}{3}})[/mm]
>  
> Soweit so gut. Jetzt hab ich aber das Problem, dass ich die
> Koeffizienten nicht wirklich "rausfiltern" kann. Ich weiss
> dass sie Index 1 und -1 haben, aber das [mm]e^{i\bruch{\pi}{3}}[/mm]
> stört mich.


Die Koeffizienten einer komplexen Fourierreihe
sind natürlich auch komplex.
Daher stört das [mm][mm]e^{i\bruch{\pi}{3}}[/mm] nicht.

x(t) ist in der Form [mm]a_{-1}*e^{-i*2*\pi*t}+a_{1}*e^{i*2*\pi*t}[/mm] darszustellen.


>  Ich hab die Lösung hier, aber ich kann sie nicht
> nachvollziehen.
>  Kann mir jemand auf die Sprünge helfen?


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]