matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFrage zu Cauchy Produkt Reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Frage zu Cauchy Produkt Reihen
Frage zu Cauchy Produkt Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zu Cauchy Produkt Reihen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:34 So 20.11.2016
Autor: X3nion

Guten Abend zusammen!

Ich habe wieder mal eine Frage zu einem Beweis.
Dieses Mal geht es um den Beweis des Cauchy-Produkts bei Reihen.

---

Der Satz lautet in der Literatur (Analysis 1, Forster) wie folgt:

Es seinen [mm] \summe_{n=0}^{\infty} a_n [/mm] und [mm] \summe_{n=0}^{\infty} b_n [/mm] absolut konvergente Reihen. Für n [mm] \in \IN [/mm] definiert man

[mm] c_n [/mm] := [mm] \summe_{k=0}^{n} a_{k}b_{n-k} [/mm] = [mm] a_0b_n [/mm] + [mm] a_{1}b_{n-1} [/mm] + ... + [mm] a_{n}b_0. [/mm]

Dann ist auch die Reihe [mm] \summe_{n=0}^{\infty} c_n [/mm] absolut konvergent mit

[mm] \summe_{n=0}^{\infty} c_n [/mm] = [mm] (\summe_{n=0}^{\infty} a_n)*(\summe_{n=0}^{\infty} b_n). [/mm]

Beweis:

Die Definition des Koeffizienten [mm] c_n [/mm] kann auch wie folgt geschrieben werden:
[mm] c_n [/mm] = [mm] \summe\{a_{k}b_{l}: k + l = n\}. [/mm]
Es wird dabei über alle Indexpaare (k,l) summiert, die in [mm] \IN \times \IN [/mm] auf der Diagonalen k + l = n liegen. Deshalb gilt für die Partialsumme

[mm] C_N [/mm] := [mm] \summe_{n=0}^{N} c_n [/mm] = [mm] \summe\{a_{k}b_{l}: (k,l) \in \Delta_{N} \}, [/mm]

wobei [mm] \Delta_N [/mm] das wie folgt definierte Dreieck in [mm] \IN [/mm] x [mm] \IN [/mm] ist:

[mm] \Delta_N [/mm] := [mm] \{(k,l) \in \IN \times \IN : k + l \le N \}, [/mm] siehe hier angefügte Skizze.

[Dateianhang nicht öffentlich]

Multipliziert man die Partialsummen

[mm] A_N [/mm] := [mm] \summe_{n=0}^{N} a_n [/mm] und [mm] B_N [/mm] := [mm] \summe_{n=0}^{N} b_n [/mm]

aus, erhält man als Produkt

[mm] A_{N}B_{N} [/mm] = [mm] \summe\{a_{k}b_{l}: (k,l) \in Q_N\}, [/mm]

wobei [mm] Q_N [/mm] das Quadrat

[mm] Q_N [/mm] := [mm] \{(k,l) \in \IN \times \IN: 0 \le k \le N, 0 \le l \le N\} [/mm]

bezeichnet. Da [mm] \Delta_N \subset Q_N, [/mm] kann man schreiben

[mm] A_{N}B_{N} [/mm] - [mm] C_N [/mm] = [mm] \summe\{a_{k}b_{l} : (k,l) \in Q_N \backslash \Delta_N\}. [/mm]

Für die Partialsummen

[mm] A^{\*}_{N} [/mm] := [mm] \summe_{n=0}^{N} |a_n|, B^{\*}_{N} [/mm] := [mm] \summe_{n=0}^{N} |b_n| [/mm]

erhält man wie oben

[mm] A^{\*}_{N}B^{\*}_{N} [/mm] = [mm] \summe\{|a_{k}||b_{l}|: (k,l) \in Q_N\}. [/mm]

Da [mm] Q_{\lfloor N/2 \rfloor} \subset \Delta_N, [/mm] folgt [mm] Q_N \backslash \Delta_N \subset Q_N \backslash Q_{\lfloor N/2 \rfloor}, [/mm] also

[mm] |A_{N}B_{N} [/mm] - [mm] C_{N}| \le \summe\{|a_{k}||b_{l}| : (k,l) \in Q_N \backslash Q_{\lfloor N/2 \rfloor}\} [/mm] = [mm] A^{\*}_{N}B^{\*}_{N} [/mm] - [mm] A^{\*}_{\lfloor N/2 \rfloor}B^{\*}_{\lfloor N/2 \rfloor} [/mm]

Da die Folge [mm] (A^{\*}_{N}B^{\*}_{N}) [/mm] konvergiert, also eine Cauchy-Folge ist, strebt die letzte Differenz für N -> [mm] \rightarrow \infty [/mm] gegen , d.h.

[mm] \limes_{N\rightarrow\infty} C_N [/mm] = [mm] \limes_{N\rightarrow\infty} A_{N}B_{N} [/mm] = [mm] \limes_{N\rightarrow\infty} A_{N} \limes_{N\rightarrow\infty} B_{N}. [/mm]

Damit ist gezeigt, dass [mm] \summe c_n [/mm] konvergiert und die im Satz behauptete Formel über das Cauchy-Produkt gilt. Es ist noch die absolute Konvergenz von [mm] \summe c_n [/mm] zu beweisen. Wegen

[mm] |c_n| \le \summe_{k=0}^{n} |a_{k}||b_{n-k}| [/mm]

ergibt sich dies durch Anwendung des bisher Bewiesenen auf die Reihen [mm] \summe |a_n| [/mm] und [mm] \summe |b_n|. [/mm]

---

Nun habe ich ein paar Fragen zu dem Beweis, wann und warum man die Absolutbeträge der jeweiligen Beträge nutzt.
Den allerletzten Schritt im Beweis, dass [mm] \summe c_n [/mm] absolut konvergiert, würde ich im nächsten Beitrag stellen, sobald mir der Beweisteil bis dahin klar ist.

1) Wieso nutzt man [mm] A^{\*}_{N} [/mm] := [mm] \summe_{n=0}^{N} |a_n| [/mm] und [mm] B^{\*}_{N} [/mm] := [mm] \summe_{n=0}^{N} |b_n| [/mm]
für den Beweis?

2) Wäre wegen [mm] Q_N \backslash \Delta_N \subset Q_N \backslash Q_{\lfloor N/2 \rfloor} [/mm] nicht auch

[mm] A_{N}B_{N} [/mm] - [mm] C_N [/mm] = [mm] \summe\{a_{k}b_{l} : (k,l) \in Q_N \backslash \Delta_N\} [/mm]

[mm] \le \summe\{a_{k}b_{l} : (k,l) \in Q_N \backslash Q_{\lfloor N/2 \rfloor}} [/mm] = [mm] A_{N}B_{N} [/mm] - [mm] A_{\lfloor N/2 \rfloor}B_{\lfloor N/2 \rfloor} [/mm] ?

3) Würde dann nicht auch die Folge [mm] (A_{N}B_{N}) [/mm]  konvergieren, die letzte Differenz somit gegen 0 für N [mm] \rightarrow \infty [/mm] gehen und man würde somit die Behauptung erhalten?

4) Wieso strebt [mm] A^{\*}_{N}B^{\*}_{N} [/mm] - [mm] A^{\*}_{\lfloor N/2 \rfloor}B^{\*}_{\lfloor N/2 \rfloor} [/mm] gegen 0? Ist es so dass, weil [mm] (A^{\*}_{N}B^{\*}_{N}) [/mm] eine Cauchy-Folge ist, man zu jedem [mm] \epsilon [/mm] ein [mm] N_{\epsilon} [/mm] findet, sodass für alle n,m [mm] \ge N_{\epsilon} [/mm] gilt: [mm] |A^{\*}_{N}B^{\*}_{N} [/mm] - [mm] |A^{\*}_{M}B^{\*}_{M}| [/mm] < [mm] \epsilon, [/mm] wobei [mm] N_{\epsilon} [/mm] so hoch gewählt werden müsste, dass N und N/2 [mm] \ge N_{\epsilon} [/mm] ?


Für eure Antworten wäre ich wie immer sehr dankbar! :-)


VG X3nion

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Frage zu Cauchy Produkt Reihen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Di 22.11.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]