matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFrage zu einer Umformung, QK
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Frage zu einer Umformung, QK
Frage zu einer Umformung, QK < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zu einer Umformung, QK: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Sa 12.01.2013
Autor: Sauri

Aufgabe
Ich soll die Konvergenz der folgenden Reihe mit dem Quotientenkriterium prüfen.

[mm] \summe_{i=1}^{\infty} \bruch{n^n}{n!} [/mm]

Hallo zusammen ich habe eine Frage zu einer Umformung die im Lösungsansatz zu o. g. Aufgabe gemacht wurde.

[mm] \left| \bruch{a_{n+1}}{a_n} \right| [/mm] = [mm] \left| \bruch{\bruch{(n+1)^{n+1}}{(n+1)!}}{\bruch{n^n}{n!}} \right| [/mm] = [mm] \bruch{(n+1)^{n+1}}{(n+1)!} \cdot \bruch{n!}{n^n} [/mm] = (n+1) [mm] \cdot (\bruch{(n+1)}{n})^n \bruch{n!}{(n+1) \cdot n!} [/mm] = [mm] (\bruch{n+1}{n})^n [/mm] = (1 + [mm] \bruch{1}{n})^n \to [/mm] e > 1

Rechts vom dritten Gleichheitszeichen steht (n+1) [mm] \cdot [/mm] [...] . Was hat man dort gemacht, dass man dort so umschreiben kann?

Wie immer vielen Dank für eure Hilfe!

        
Bezug
Frage zu einer Umformung, QK: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Sa 12.01.2013
Autor: schachuzipus

Hallo Sauri,


> Ich soll die Konvergenz der folgenden Reihe mit dem
> Quotientenkriterium prüfen.
>  
> [mm]\summe_{i=1}^{\infty} \bruch{n^n}{n!}[/mm]
>  Hallo zusammen ich
> habe eine Frage zu einer Umformung die im Lösungsansatz zu
> o. g. Aufgabe gemacht wurde.
>  
> [mm]\left| \bruch{a_{n+1}}{a_n} \right|[/mm] = [mm]\left| \bruch{\bruch{(n+1)^{n+1}}{(n+1)!}}{\bruch{n^n}{n!}} \right|[/mm]
> = [mm]\bruch{(n+1)^{n+1}}{(n+1)!} \cdot \bruch{n!}{n^n}[/mm] = (n+1)  [mm]\cdot (\bruch{(n+1)}{n})^n \bruch{n!}{(n+1) \cdot n!}[/mm] =
> [mm](\bruch{n+1}{n})^n[/mm] = (1 + [mm]\bruch{1}{n})^n \to[/mm] e > 1 [ok]

Also divergiert die Reihe

>  
> Rechts vom dritten Gleichheitszeichen steht (n+1) [mm]\cdot[/mm]
> [...] . Was hat man dort gemacht, dass man dort so
> umschreiben kann?

Man hat das [mm] $(n+1)^{n+1}$ [/mm] geschrieben als [mm] $(n+1)\cdot{}(n+1)^n$ [/mm]

Daher das $n+1$, das [mm] $(n+1)^n$ [/mm] wurde mit dem [mm] $n^n$ [/mm] im Nenner verarztet ...

>  
> Wie immer vielen Dank für eure Hilfe!

Gruß

schachuzipus


Bezug
                
Bezug
Frage zu einer Umformung, QK: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 Sa 12.01.2013
Autor: Sauri

Hallo vielen vielen Dank!

[mm] \bruch{n!}{(n+1) \cdot n!} [/mm] = [mm] \bruch{n!}{(n+1)!} [/mm] = [mm] \bruch{1}{n+1} [/mm] ^^

Und zum Schluss kann man dann alles kürzen. Und es bleibt nur noch [mm] (\bruch{(n+1)}{n})^n [/mm] übrig....

nochmals danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]