matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraFrobenius Automorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Frobenius Automorphismus
Frobenius Automorphismus < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frobenius Automorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Mi 04.01.2012
Autor: mili03

Hallo,

ich habe eine Frage zum Verständnis. In meiner Vorlesung habe ich folgendes notiert:

Der Frobenius Automorphismus [mm] f:\IF_{p^n}\to\IF_{p^n},x\mapsto x^p [/mm] überträgt Nullstellen auf Nullstellen, das Minimalpolynom zerfällt in [mm] (X-a)(X-a^p)\cdots(X-a^{p^n-1}). [/mm] Dabei ist a ein Primteiler von [mm] \IF_{p^n}^\ast. [/mm]

Ich werde aus dieser Notiz nach langem Grübeln immer noch nicht schlau. Welche Nullstellen werden übertragen?

Und von welchem Minimalpolynom ist die Rede? Es könnte auch sein, dass da steht [mm] (X-a)(X-a^p)\cdots(X-a^{p(n-1)}), [/mm] kann meine eigene Schrift leider nicht lesen ...

Ich kann leider keine weiteren Infos geben, da es sich eben nur um diese (lückenhafte) Notiz handelt.

Danke für Hilfe.&Gruß
mili

        
Bezug
Frobenius Automorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Mi 04.01.2012
Autor: felixf

Moin!

> ich habe eine Frage zum Verständnis. In meiner Vorlesung
> habe ich folgendes notiert:
>  
> Der Frobenius Automorphismus
> [mm]f:\IF_{p^n}\to\IF_{p^n},x\mapsto x^p[/mm] überträgt
> Nullstellen auf Nullstellen, das Minimalpolynom zerfällt
> in [mm](X-a)(X-a^p)\cdots(X-a^{p^n-1}).[/mm] Dabei ist a ein

Das stimmt nicht ganz: das Minimalpolynom (von $a$) ist $(X - a) (X - [mm] a^p) \cdots [/mm] (X - [mm] a^{p^{n-1}})$. [/mm]

> Primteiler von [mm]\IF_{p^n}^\ast.[/mm]

Was soll ein "Primteiler" von [mm] $\IF_{p^n}^\ast$ [/mm] sein?

Ist gemeint, dass [mm] $\IF_{p^n} [/mm] = [mm] \IF_p(a)$ [/mm] ist? Oder ist ein primitives Element gemeint (was insb. das erfuellt)?

> Ich werde aus dieser Notiz nach langem Grübeln immer noch
> nicht schlau. Welche Nullstellen werden übertragen?

Sei $g$ das Minimalpolynom von $a$ ueber [mm] $\IF_p$. [/mm] Ist dann $x$ eine Nullstelle von $g$, so auch $f(x) = [mm] x^p$. [/mm] Ebenso ist dann $f(f(x)) = [mm] x^{p^2}$, [/mm] $f(f(f(x))) = [mm] x^{p^3}$, [/mm] ... eine Nullstelle von $g$.

> Und von welchem Minimalpolynom ist die Rede?

Das von $a$ ueber [mm] $\IF_p$. [/mm] Das scheint Grad $n$ zu haben (was aequvialent zu [mm] $\IF_{p^n} [/mm] = [mm] \IF_p(a)$ [/mm] ist.)

> Es könnte
> auch sein, dass da steht [mm](X-a)(X-a^p)\cdots(X-a^{p(n-1)}),[/mm]
> kann meine eigene Schrift leider nicht lesen ...

Es muss [mm] $a^{p^{n-1}}$ [/mm] heissen zum Schluss.

LG Felix


Bezug
                
Bezug
Frobenius Automorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:56 Mi 04.01.2012
Autor: mili03

Hallo felix,

dankesehr!!!

> Moin!
>  
> > ich habe eine Frage zum Verständnis. In meiner Vorlesung
> > habe ich folgendes notiert:
>  >  
> > Der Frobenius Automorphismus
> > [mm]f:\IF_{p^n}\to\IF_{p^n},x\mapsto x^p[/mm] überträgt
> > Nullstellen auf Nullstellen, das Minimalpolynom zerfällt
> > in [mm](X-a)(X-a^p)\cdots(X-a^{p^n-1}).[/mm] Dabei ist a ein
>
> Das stimmt nicht ganz: das Minimalpolynom (von [mm]a[/mm]) ist [mm](X - a) (X - a^p) \cdots (X - a^{p^{n-1}})[/mm].
>  
> > Primteiler von [mm]\IF_{p^n}^\ast.[/mm]
>  
> Was soll ein "Primteiler" von [mm]\IF_{p^n}^\ast[/mm] sein?
>  
> Ist gemeint, dass [mm]\IF_{p^n} = \IF_p(a)[/mm] ist? Oder ist ein
> primitives Element gemeint (was insb. das erfuellt)?

Hm, gute Frage. Zusammen mit der Erklärung unten, würde ich aber meinen, dass die erste Variante besser passt (vielleicht hatte ich das falsch notiert, ging sehr schnell).

>  
> > Ich werde aus dieser Notiz nach langem Grübeln immer noch
> > nicht schlau. Welche Nullstellen werden übertragen?
>  
> Sei [mm]g[/mm] das Minimalpolynom von [mm]a[/mm] ueber [mm]\IF_p[/mm]. Ist dann [mm]x[/mm] eine
> Nullstelle von [mm]g[/mm], so auch [mm]f(x) = x^p[/mm]. Ebenso ist dann
> [mm]f(f(x)) = x^{p^2}[/mm], [mm]f(f(f(x))) = x^{p^3}[/mm], ... eine
> Nullstelle von [mm]g[/mm].

Wie folgt denn, dass [mm] f(x)=x^p [/mm] auch Nullstelle ist?

Den Rest habe ich alles verstanden :-)

Gruß

>  
> > Und von welchem Minimalpolynom ist die Rede?
>  
> Das von [mm]a[/mm] ueber [mm]\IF_p[/mm]. Das scheint Grad [mm]n[/mm] zu haben (was
> aequvialent zu [mm]\IF_{p^n} = \IF_p(a)[/mm] ist.)
>  
> > Es könnte
> > auch sein, dass da steht [mm](X-a)(X-a^p)\cdots(X-a^{p(n-1)}),[/mm]
> > kann meine eigene Schrift leider nicht lesen ...
>  
> Es muss [mm]a^{p^{n-1}}[/mm] heissen zum Schluss.
>  
> LG Felix
>  


Bezug
                        
Bezug
Frobenius Automorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 Mi 04.01.2012
Autor: felixf

Moin!

> > > Primteiler von [mm]\IF_{p^n}^\ast.[/mm]
>  >  
> > Was soll ein "Primteiler" von [mm]\IF_{p^n}^\ast[/mm] sein?
>  >  
> > Ist gemeint, dass [mm]\IF_{p^n} = \IF_p(a)[/mm] ist? Oder ist ein
> > primitives Element gemeint (was insb. das erfuellt)?

(Ok, primitives Element kann auch einfach nur das erste bedeuten. Je nachdem in welchem Kontext es vorkommt...)

> > > Ich werde aus dieser Notiz nach langem Grübeln immer noch
> > > nicht schlau. Welche Nullstellen werden übertragen?
>  >  
> > Sei [mm]g[/mm] das Minimalpolynom von [mm]a[/mm] ueber [mm]\IF_p[/mm]. Ist dann [mm]x[/mm] eine
> > Nullstelle von [mm]g[/mm], so auch [mm]f(x) = x^p[/mm]. Ebenso ist dann
> > [mm]f(f(x)) = x^{p^2}[/mm], [mm]f(f(f(x))) = x^{p^3}[/mm], ... eine
> > Nullstelle von [mm]g[/mm].
>
>  Wie folgt denn, dass [mm]f(x)=x^p[/mm] auch Nullstelle ist?

Das liegt daran, dass
a) $f(y) = y$ ist fuer alle $y [mm] \in \IF_p$ [/mm] (und somit fuer alle Koeffizienten von $g$);
b) dass $f$ ein Koerperautomorphismus ist und somit Vertraeglich mit der Addition und Multiplikation.

Ist $g = [mm] \sum_{i=0}^m a_i X^i$, [/mm] so gilt damit $g(f(x)) = [mm] \sum_{i=0}^m a_i f(x)^i [/mm] = [mm] \sum_{i=0}^m f(a_i) f(x^i) [/mm] = [mm] \sum_{i=0}^m f(a_i x^i) [/mm] = [mm] f(\sum_{i=0}^m a_i x^i)$. [/mm]

LG Felix


Bezug
                                
Bezug
Frobenius Automorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:06 Do 05.01.2012
Autor: mili03


> LG Felix

Vielen Dank!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]