matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenFundamentalsystem bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Fundamentalsystem bestimmen
Fundamentalsystem bestimmen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fundamentalsystem bestimmen: Fundamentalsystem
Status: (Frage) beantwortet Status 
Datum: 13:52 Do 20.12.2007
Autor: Murx

Hallo Mathefreunde,

bei der folgenden Aufgabe komm ich leider nicht weiter:

Bestimmen Sie die allgemeine reelle Lösung des DGL-Systems:

y' =  [mm] \pmat{ 1 & -2 & 0 \\ 2 & 0 & -1 \\ 4 & -2 & -1 }y [/mm]

Eigentlich ist die Aufgabe ja nicht so schwer. Muss ja lediglich ein Fundamentalsystem aufstellen und dieses evtl. noch in ein reelles FS überführen, je nachdem, ob man ein komplexes oder ein reelles FS erhält.

Ich hab dann mal mit dem charakteristischen Polynom angefangen und folgendes erhalten:

P(x) = x³ + x + 2

Damit komm ich auf die Eigenwerte: [mm] x_{1}= [/mm] 1, [mm] x_{2,3}= [/mm] - [mm] \bruch{1}{2} \pm \bruch{\wurzel{7}}{2} [/mm] i

Aber dann klappt die Berechnung eines eigenvektors zu EW [mm] x_{2,3} [/mm] nicht mehr. Irgendwie fällt dann nix mehr weg.

Ich vermute ich muss da irgendwo einen Fehler bei den Eigenwerten gemacht haben, finde ihn aber nicht. ;-(

Ich bitte daher um Hilfe. Vielleicht findet einer von euch ja meinen Fehler. Danke.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fundamentalsystem bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Do 20.12.2007
Autor: blascowitz

Guten Tach
Also die EW der Matrix stimmen. Allerdings ist die Berechnung der EV recht ecklich^^.Wobei man feststellt das man zweimal den selben EV hat.  Es ergibt sich für [mm] \lambda_{2}= \vektor{ - \bruch{2}{-3+i\wurzel{7}}\\\bruch{1}{2} \\1}. [/mm] Das selbe ergibt sich auch für Das komplex konjugierte. Du hast also trotzdem 3 Vektoren im endeffekt. Daraus kann man sich dann ein Fundamentalsystem.
Frohe Weihnachten und einen schönen Tach

Bezug
                
Bezug
Fundamentalsystem bestimmen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:12 Do 20.12.2007
Autor: Murx

Hallo blascowitz,

ist denn der EV zum komplex konjugierten EW nicht mit einem Minus vor dem i, also ...-3 - [mm] i\wurzel{7} [/mm] ???

So kenn ich das zumindest nur.

Die Rechnung zum EV werd ich jetzt auf jeden fall nochmal versuchen. Hoffe das bekomm ich hin.

Auf jeden Fall schonmal danke, dass du dir diese eklige Rechnerei angetan hast.


Bezug
                        
Bezug
Fundamentalsystem bestimmen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Sa 22.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Fundamentalsystem bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:55 Mi 02.01.2008
Autor: IG0R

Also eigentlich steht die Lösung zu der Aufgabe ja schon im Skript auf Seite 63. Allerdings hat der Prof andere Eigenvektoren raus.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]