matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationFunktional
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Funktional
Funktional < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktional: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Mi 03.10.2007
Autor: Phecda

hi
unser dozent hat gesagt, dass integral sei ein funktional.
das heißt es ist eine funktion (Abbildung) die einer fkt eine zahl zuordnet.
ist ein funktional also immer eine abblidung von einer fkt auf eine Zahl? oder steckt mehr dahinter?
Die Ableitung ist doch dann auch ein Funktional?
Oder was heißt so genau der begriff. wikipedia sagt ja abbildung eines Vektorraums auf ein Körper.
super ^^

mfg

        
Bezug
Funktional: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Mi 03.10.2007
Autor: andreas

hi

>  unser dozent hat gesagt, dass integral sei ein
> funktional.
>  das heißt es ist eine funktion (Abbildung) die einer fkt
> eine zahl zuordnet.

im prinzip ja. du hast unten ja schon die (fast) korrekte definition genannt. nämlich sind für einen $K$-vektorraum $V$ die funktionale gerade die linearen abbildungen $f: V [mm] \longrightarrow [/mm] K$.


>  ist ein funktional also immer eine abblidung von einer fkt
> auf eine Zahl? oder steckt mehr dahinter?

wie oben geschrieben muss man eben noch fordern, dass die abbildungen linear sind. als vektorräume auf denen die funktionale definiert sind betrachtet man heute auch beliebige vektorräume, ursprünglich waren funktionale aber nur auf funktionenräumen definiert.


>  Die Ableitung ist doch dann auch ein Funktional?

nein. die ableitung bildet doch eine (differnzierbare) funktion wieder auf einen funktion ab, also nicht auf ein körperelement. aber etwa die auswertung der ableitung an einer bestimmten stelle ist ein funktional: sei $V = [mm] \{f: \mathbb{R} \longrightarrow \mathbb{R}: f \textrm{ differnzierbar} \}$ [/mm] der [mm] $\mathbb{R}$-vektorraum [/mm] der differnzierbaren funktionen, dann ist etwa $F: V [mm] \longrightarrow \mathbb{R}; [/mm] f [mm] \longmapsto [/mm] F(f) := f'(1)$ ein funktional. prüfe einfach nach, dass dies eine lineare abbildung von $V$ nach [mm] $\mathbb{R}$ [/mm] ist.


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]