matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisFunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Funktionen
Funktionen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:42 Fr 30.01.2009
Autor: Timberbell

Aufgabe
Ich soll zeigen, das jede Funktion f: D -> R sich schreiben lässt als f(x) = g(x) + u(x). Wobei g gerade und u ungerade ist.  

Hallo miteinander,

leider weiß ich nicht so recht wie ich die Aufgabe angehen soll, für ein paar hilfreiche Tipps, wäre ich sehr dankbar.

Vielen Dank =)

MfG

Timberbell

        
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Fr 30.01.2009
Autor: Leopold_Gast

Kennst du den Sinus hyperbolicus [mm]u(x) = \sinh x[/mm] und den Cosinus hyperbolicus [mm]g(x) = \cosh x[/mm]? Die eine Funktion ist ungerade, die andere gerade. Und ihre Summe ist die Exponentialfunktion [mm]f(x) = \operatorname{e}^x[/mm]:

(I)  [mm]f(x) = u(x) + g(x)[/mm]

Jetzt schau einmal, wie [mm]u(x)[/mm] und [mm]g(x)[/mm] mit Hilfe von [mm]f(x)[/mm] definiert sind und ahme dieses Konstruktionsprinzip für die allgemeine Lösung des Problems nach.

Alternativ kannst du auch in der Gleichung (I) [mm]x[/mm] durch [mm]-x[/mm] ersetzen und die Ungeradheit bzw. Geradheit von [mm]u(x)[/mm] bzw. [mm]g(x)[/mm] ausnutzen, um eine Gleichung (II) mit [mm]u(x)[/mm] und [mm]g(x)[/mm] zu erhalten. Die Gleichungen (I),(II) bilden dann ein lineares Gleichungssystem in [mm]u(x)[/mm] und [mm]g(x)[/mm], das sich leicht lösen läßt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]