matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenFunktionenreihe - punktweise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Funktionenreihe - punktweise
Funktionenreihe - punktweise < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenreihe - punktweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:53 Do 11.02.2010
Autor: Anna-Lyse

Hallo,

eine Funktionenreihe konvergiert punktweise, wenn die Funktionenreihe für jedes x aus dem Definitionsbereich gegen F(x) konvergiert (also gegen die Summenfunktion der Reihe).
Sie konvergiert gleichmäßig, wenn die Folge ihrer Teilsummen gleichmäßig konvergiert.
Stimmt das soweit?
Irgendwie kann ich mir den exakten Unterschied nicht ganz verdeutlichen. Den Unterschied zu punktweise - gleichmäßig bezüglich Funktionenfolgen habe ich verstanden. Würde mich freuen, wenn mir das noch einmal jemand anschaulich verdeutlichen/erklären könnte in ein/zwei Sätzen.

DANKE!
Anna


        
Bezug
Funktionenreihe - punktweise: Antwort
Status: (Antwort) fertig Status 
Datum: 12:07 Do 11.02.2010
Autor: leduart

Hallo
Die Funktionenreihe kannst du doch als Funktionenfolge ansehen, wenn du die Summe bis n als [mm] f_n [/mm] betrachtest. Dann sagst du ja, du hasts verstanden.
Gruss leduart

Bezug
                
Bezug
Funktionenreihe - punktweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:55 Do 11.02.2010
Autor: Anna-Lyse

Hallo leduart,

DANKE für Deine Antwort.

Also, eine Funktionenreihe konvergiert punktweise, wenn die Funktionenreihe für jedes x aus dem Definitionsbereich gegen F(x) konvergiert (also gegen die Summenfunktion der Reihe). Das bedeutet, dass man für jedes x die Folge der Partialsummen der Funktionsreihe betrachtet. Konvergiert diese gegen F(x), dann konvergiert die Funktionenreihe punktweise.  
Sie konvergiert gleichmäßig, wenn die Folge ihrer Teilsummen [mm] (s_n) [/mm] gleichmäßig konvergiert (im Sinne einer Funktionenfolge).

Richtig?

Gruß,
Anna

Bezug
                        
Bezug
Funktionenreihe - punktweise: Antwort
Status: (Antwort) fertig Status 
Datum: 12:57 Do 11.02.2010
Autor: fred97


> Hallo leduart,
>  
> DANKE für Deine Antwort.
>  
> Also, eine Funktionenreihe konvergiert punktweise, wenn die
> Funktionenreihe für jedes x aus dem Definitionsbereich
> gegen F(x) konvergiert (also gegen die Summenfunktion der
> Reihe). Das bedeutet, dass man für jedes x die Folge der
> Partialsummen der Funktionsreihe betrachtet. Konvergiert
> diese gegen F(x), dann konvergiert die Funktionenreihe
> punktweise.  
> Sie konvergiert gleichmäßig, wenn die Folge ihrer
> Teilsummen [mm](s_n)[/mm] gleichmäßig konvergiert (im Sinne einer
> Funktionenfolge).
>  
> Richtig?

Ja

FRED

>  
> Gruß,
>  Anna


Bezug
                                
Bezug
Funktionenreihe - punktweise: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:58 Do 11.02.2010
Autor: Anna-Lyse

Hallo Fred - DANKE.

Gruß,
Anna  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]