matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenFunktionenschar
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Rationale Funktionen" - Funktionenschar
Funktionenschar < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenschar: Bräuchte dringend hilfe
Status: (Frage) überfällig Status 
Datum: 15:53 So 23.04.2006
Autor: oile

Aufgabe
1. Gegeben ist für k [mm] \varepsilon [/mm] IR+- die Schar von Funktionen   mit maximalem Definitionsbereich Dk. Der Graph von fk wird mit Gk bezeichnet.
a) Bestimmen Sie Dk . Untersuchen Sie das Verhalten von fk an den Grenzen des Definitionsbereichs und geben Sie die Asymptoten von Gk an.
b) Zeigen Sie, dass in Dk gilt:  
fk ( - 1/k - x ) = fk (-1/k + x)
Welche Symmetrieeigenschaft von Gk ist damit nachgewiesen?
c) Ermitteln Sie das Monotonieverhalten von fk.                                
d) Zeigen Sie, dass alle Graphen der Schar genau einen gemeinsamen Punkt P haben und stellen Sie eine Gleichung der Tangente tk im Punkt P auf. [Teilergebnis: P(0/1)]
2. Im Folgenden sei k = 0,5.
Berechnen Sie die Abszissen der Punkte von G0,5, deren Ordinate den Wert 4 hat. Zeichnen Sie G0,5 sowie t0,5 (vgl. Teilaufgabe l d) unter Verwendung aller bisherigen Ergebnisse im Bereich -8 <= x  <=4 (Längeneinheit l cm).
3.
a) Zeigen Sie, dass F : x [mm] \mapsto [/mm] -4/(x+2)  mit DF = D0,5 eine Stammfunktion von f0,5 ist.
b) Ermitteln Sie die obere Integrationsgrenze t so, dass  [mm] \integral_{0}^{t}{f0,5(x) dx} [/mm] =1  ist.    
c) Der Graph G0,5, die x-Achse, die Gerade x = 2 und die Gerade x = u (u > 2) schließen ein Flächenstück vom Inhalt A(u) ein. Berechnen Sie lim A (u).

u [mm] \to \infty [/mm]

Hallo erstmal :)

dies alles muss ich für morgen machen :-/
ich selber weiß zu diesen aufgaben kaum noch was, vllt kommts wenn ich den ersten teil gerafft habe. wäre super wenn mir das einer vorrechnen oder tipps geben könnte, so dass es quasi einer ohne vorwissen versteht ;)

ich weiß, dass ist sehr knapp aber wäre trotzdem super wenn ichs noch schaffen würde

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktionenschar: Fehlt da nicht etwas?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 So 23.04.2006
Autor: Disap

Hallo.
Evtl. stelle ich mich gerade etwas dumm an, aber fehlt da nicht die Funktionsgleichung?

Normalerweise steht die doch immer schön im Text von Aufgabe 1...

mfG,
Disap

Bezug
                
Bezug
Funktionenschar: die funktion :-/
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:39 So 23.04.2006
Autor: oile

ahhh habs verrafft die funktion anzugeben =(

fk : x -> 1/(kx+1)²

lautet sie

Bezug
        
Bezug
Funktionenschar: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Di 25.04.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]