matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenFunktionenschar als Tangente
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Funktionenschar als Tangente
Funktionenschar als Tangente < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenschar als Tangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Di 30.09.2008
Autor: Zerwas

Aufgabe
Es sind gegeben:
f(x) = [mm] x-\bruch{1}{2}*(e^x [/mm] -1)
und
[mm] g_k(x) [/mm] = kx + 2

Bestimmen sie k so, dass [mm] g_k(x) [/mm] Tangente an f(x) ist.

Hallo,
ich hänge hier einfach total :(

Die zu erfüllenden Bedingungen sind
1) [mm] f'(x_0) [/mm] = k (= [mm] g_k'(x)) [/mm]
2) [mm] f(x_0) [/mm] = [mm] g_k(x_0) [/mm]

Wobei [mm] x_0 [/mm] der Wert ist bei dem [mm] g_k [/mm] f tangiert.

Daraus folgen 2 Gleichungen:
[mm] 1-\bruch{1}{2}*e^{x_0} [/mm] = k
[mm] x_0-\bruch{1}{2}*(e^{x_0} [/mm] -1)

Wenn ich jetzt versuche zu lösen komme ich immer auf ein ähnliches Problem ... entweder habe ich ln(2-2k) und k in einem Term oder x und [mm] e^x. [/mm] Dadurch kann ich einfach nicht auflösen.

Ich habe dann da stehen:
[mm] e^{x_0}(1-x_0) [/mm] = -3
oder
ln(2-2k) + k = k * ln(2-2k) +2

Gibt es hier vllt eine bessere / alternative Herangeghensweise?

Wenn mir jmd. weiterhelfen könne wäre ich sehr dankbar.

Ich habe diese Frage auf keinem anderen Forum auf anderen Internetseiten gestellt.

Gruß Zerwas

        
Bezug
Funktionenschar als Tangente: umformen und einsetzen
Status: (Antwort) fertig Status 
Datum: 20:44 Di 30.09.2008
Autor: Loddar

Hallo Zerwas!


Forme Deine 1. Gleichung um nach [mm] $e^{x_0} [/mm] \ = \ 2*(1-k)$ und setze dies in die 2. Gleichung ein.
Damit hast Du nur noch eine Unbekannte und kannst diese Gleichung nach [mm] $x_0 [/mm] \ = \  ...$ umstellen.


Gruß
Loddar

Bezug
                
Bezug
Funktionenschar als Tangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:27 Di 30.09.2008
Autor: Zerwas

Wenn ich die erste Gleichung nach [mm] e^{x_0} [/mm] umforme und in die zweite einsetze erhalte ich:
[mm] x_0 -\bruch{1}{2}*(2*(1-k)-1) [/mm] = k [mm] *x_0 [/mm] + 2
...
[mm] x_0 [/mm] = [mm] \bruch{\bruch{5}{2} - k}{1-k} [/mm]
und jetzt?

Ih sehe gerade, dass ich bei mer ursprünglichen Frage etwas vergessen habe... natürlich müsste die zweite Gleichung
[mm] x_0-0,5*(e^{x_0}-1) [/mm] = [mm] kx_0 [/mm] +2
lauten.
Sry:-[

Gruß Zerwas

Bezug
                        
Bezug
Funktionenschar als Tangente: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Di 30.09.2008
Autor: Al-Chwarizmi

Zuerst brauchst du natürlich die richtigen Gleichungen:

      1.)  [mm] f'(x_o)=g'(x_o) [/mm]

      2.)  [mm] f(x_o)=g(x_o) [/mm]

Du hast die Wahl, die erste Gleichung entweder nach
[mm] x_o [/mm]  oder aber nach k  aufzulösen und das Ergebnis
in die zweite Gleichung einzusetzen.
Das führt auf unterschiedliche Gleichungen, wähle
die aus, die dir besser behagt.

Die entstehende Gleichung ist aber jedenfalls nicht
durch einfaches Umformen zu lösen. Es wird eine
Näherungsmethode erforderlich sein.

Ich habe erhalten:  k=-1.4853...  ,  [mm] x_o=1.6035... [/mm]


LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]