matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und ApproximationFunktionswert der Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Interpolation und Approximation" - Funktionswert der Ableitung
Funktionswert der Ableitung < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionswert der Ableitung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:45 Mo 04.02.2019
Autor: Belserich

Aufgabe
Betrachten Sie die Funktion: [mm] $\frac{\sin^2{\frac{\sqrt{x^2 + x}}{\cos{x} - x}}}{\sin{\frac{\sqrt{x} - 1}{\sqrt{x^2 + 1}}}}$. [/mm] Berechnen Sie analytisch ${f}'(0.25)$.

Ich habe jetzt mehrere Male versucht nach den gelernten Regln zu differenzieren aber mich dabei jedes Mal verzettelt.

Meine Frage ist, ob es auch eine anderen Weg gibt, ${f}'(0.25)$ zu berechnen, ohne $f$ abzuleiten, oder einen Weg $f$ einfach abzuleiten. Ich habe schonmal mit Online-Ableitungsrechnern gegengeprüft, die verkomplizieren die Gleichung noch weiter. Ich habe auch Matlab einmal differenzieren lassen aber da sieht es genau so aus (also komplizierter als die Ausgangsgleichung). Ganz nebenbei darf ich Matlab auch gar nicht verwenden, da eine weitere Teilaufgabe ist die Gleichung numerisch zu differenzieren, heißt es wird wirklich eine Art Schritt für Schritt herangehensweise erwartet, das ganze nach den Regeln aus der Analysis zu differenzieren (oder nicht?).

Kann mir wer einen Ansatz zu einer besseren Vorgehensweise geben?

        
Bezug
Funktionswert der Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Mo 04.02.2019
Autor: leduart

Hallo
es gibt analytisch keinen anderen Weg, als sich da durchzuwurschteln. eine Hilfe ist, die einzelnen Ausdrücke zu separieren also etwa f(x)/g(x)   [mm] f(x)=sin^2(h(x) [/mm] und h(x)=a(x)/b(x) usw, dann die einzelnen Funktionen ableiten, Wert einsetzen und dann die Regeln auf die so zusammengesetzten Funktionen und ihren Ableitungen  anwenden.
wahrscheinlich soll das demonstrieren, dass man beim Programmieren solcher und ähnlicher Monster lieber numerisch differenziert.
Gruß leduart


Bezug
                
Bezug
Funktionswert der Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:12 Di 05.02.2019
Autor: Belserich

Also gut, danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]