matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraGaloisgruppe bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Galoisgruppe bestimmen
Galoisgruppe bestimmen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Galoisgruppe bestimmen: Idee und Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:35 Mi 24.06.2020
Autor: clemenum

Aufgabe
Bestimme die Galoisgruppe des Polynoms [mm] $p=X^6+X^4+X^2+1$ [/mm] über [mm] $\mathbb{Q}$ [/mm] und über [mm] $F_5$ [/mm]

Liebe Mathematikerinnen und Mathematiker!

Die Sache ist die, dass wir aufgrund der Coronapandamie diesmal weniger Möglichkeiten hatten die Professoren bei Unklarheiten zu fragen. Daher bitte ich euch, dass es etwas mehr geduldet wird, wenn es wo Unklarheiten gibt! :)

Meine erste Frage dazu ist: Muss man das Polynom faktorisieren können um Körper-Automorphismen aufstellen zu können? Ich wüßte nicht, wie man die Nullstellen miteinander vertauschen soll, wenn man sie nicht kennt.

Hier ist jedenfalls mal die Faktorisierung:
$p= [mm] (x^2+1)(x^4+1)= (x-i)(x+i)(x^2-i)(x^2+i)= [/mm]
[mm] $=(x-i)(x+i)(x-e^{i*\pi/4})(x+e^{i*\pi/4})(x-e^{(7*\pi/4)*i})(x+e^{(7*\pi/4)*i})$ [/mm]

$p$ hat also die "Wurzeln" [mm] $\pm [/mm] i, [mm] \pm e^{i*\pi/4}, \pm e^{(7*\pi/4)*i}$ [/mm]

Wir erhalten also den Zerfällungskörper K von $p$, indem wir an den Grundkörper [mm] $\mathbb{Q}$ [/mm] alle Nullstellen von $p$ adjungieren. Der Zerfällungskörper von $p$ ist also [mm] $\mathbb{Q}(i,-i,e^{i*\pi/4}, -e^{i*\pi/4}, e^{(7*\pi/4)*i}, -e^{(7*\pi/4)*i}).$ [/mm] Wir wissen außerdem, dass ein Körper, der ein Element $a$ enthält, auch dessen additives Inverses $-a$ enthält und somit der Zerfällungskörper $K$ folgende einfachere Darstellung haben muss:
$K:= [mm] \mathbb{Q}(i,e^{i*\pi/4}, e^{(7\pi/4)i} [/mm] )$

Da der Grad der Körpererweiterung der Anzahl der Automorphismen  unserer Automorphismengruppe entspricht, müssen wir also [mm] $[K:\mathbb{Q}]$ [/mm] bestimmen, um leichter und schneller all unsere Elemente der gesuchten Gruppe [mm] $Gal:=Gal(K/\mathbb{Q})$ [/mm] angeben zu können.

Idee dazu: Die Gradformel hilft!
Wegen  Kette von Körpererweiterungen, gilt also
[mm] $[K:\mathbb{Q}]= [/mm] [K: [mm] \mathbb{Q}(i,e^{i*\pi/4})]\cdot [\mathbb{Q}(i,e^{i*pi/4}):\mathbb{Q}(i)]\cdot [\mathbb{Q}(i):\mathbb{Q}]. [/mm] $

Meine erste Frage ist mal, wie kann ich zum Beispiel  $[K: [mm] \mathbb{Q}(i,e^{i*\pi/4})]$ [/mm] feststellen? Ich weiß, dass man mit dem Grad von Minimalpolynomen arbeiten muss, aber wie soll hier das Minimalpolynom aussehen?

Wäre für Hilfe sehr dankbar!


        
Bezug
Galoisgruppe bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:35 Do 25.06.2020
Autor: statler

Guten Morgen!

> Bestimme die Galoisgruppe des Polynoms [mm]p=X^6+X^4+X^2+1[/mm]
> über [mm]\mathbb{Q}[/mm] und über [mm]F_5[/mm]
>  Liebe Mathematikerinnen und Mathematiker!
>  
> Die Sache ist die, dass wir aufgrund der Coronapandamie
> diesmal weniger Möglichkeiten hatten die Professoren bei
> Unklarheiten zu fragen. Daher bitte ich euch, dass es etwas
> mehr geduldet wird, wenn es wo Unklarheiten gibt! :)
>  
> Meine erste Frage dazu ist: Muss man das Polynom
> faktorisieren können um Körper-Automorphismen aufstellen
> zu können? Ich wüßte nicht, wie man die Nullstellen
> miteinander vertauschen soll, wenn man sie nicht kennt.
>
> Hier ist jedenfalls mal die Faktorisierung:
>  $p= [mm](x^2+1)(x^4+1)= (x-i)(x+i)(x^2-i)(x^2+i)=[/mm]
>  
> [mm]=(x-i)(x+i)(x-e^{i*\pi/4})(x+e^{i*\pi/4})(x-e^{(7*\pi/4)*i})(x+e^{(7*\pi/4)*i})[/mm]
>
> [mm]p[/mm] hat also die "Wurzeln" [mm]\pm i, \pm e^{i*\pi/4}, \pm e^{(7*\pi/4)*i}[/mm]
>  
> Wir erhalten also den Zerfällungskörper K von [mm]p[/mm], indem
> wir an den Grundkörper [mm]\mathbb{Q}[/mm] alle Nullstellen von [mm]p[/mm]
> adjungieren. Der Zerfällungskörper von [mm]p[/mm] ist also
> [mm]\mathbb{Q}(i,-i,e^{i*\pi/4}, -e^{i*\pi/4}, e^{(7*\pi/4)*i}, -e^{(7*\pi/4)*i}).[/mm]
> Wir wissen außerdem, dass ein Körper, der ein Element [mm]a[/mm]
> enthält, auch dessen additives Inverses [mm]-a[/mm] enthält und
> somit der Zerfällungskörper [mm]K[/mm] folgende einfachere
> Darstellung haben muss:
> [mm]K:= \mathbb{Q}(i,e^{i*\pi/4}, e^{(7\pi/4)i} )[/mm]
>  

Das geht noch einfacher: [mm] e^{i*\pi/4} [/mm] reicht, weil die beiden anderen Elemente Potenzen davon sind. Dann ist [mm] [K:\mathbb{Q}] [/mm] = 4.

> Da der Grad der Körpererweiterung der Anzahl der
> Automorphismen  unserer Automorphismengruppe entspricht,
> müssen wir also [mm][K:\mathbb{Q}][/mm] bestimmen, um leichter und
> schneller all unsere Elemente der gesuchten Gruppe
> [mm]Gal:=Gal(K/\mathbb{Q})[/mm] angeben zu können.

Für die Galois-Gruppe gibt es nur noch 2 Möglichkeiten. Aber jeder Automorphismus [mm] \varphi [/mm] wird bestimmt durch das Bild von [mm] e^{i*\pi/4}. [/mm] Damit sind auch die Potenzen von [mm] \varphi [/mm] bstimmt.

>
> Idee dazu: Die Gradformel hilft!
>  Wegen  Kette von Körpererweiterungen, gilt also
>  [mm][K:\mathbb{Q}]= [K: \mathbb{Q}(i,e^{i*\pi/4})]\cdot [\mathbb{Q}(i,e^{i*pi/4}):\mathbb{Q}(i)]\cdot [\mathbb{Q}(i):\mathbb{Q}].[/mm]
>  
> Meine erste Frage ist mal, wie kann ich zum Beispiel  [mm][K: \mathbb{Q}(i,e^{i*\pi/4})][/mm]
> feststellen? Ich weiß, dass man mit dem Grad von
> Minimalpolynomen arbeiten muss, aber wie soll hier das
> Minimalpolynom aussehen?
>  
> Wäre für Hilfe sehr dankbar!

Wie sieht das bei [mm] F_5 [/mm] aus?

Gruß aus HH
Dieter  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]