matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGeometrische Reihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Grenzwerte" - Geometrische Reihe
Geometrische Reihe < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geometrische Reihe: Umformungsprobleme
Status: (Frage) beantwortet Status 
Datum: 21:09 Di 03.10.2006
Autor: Smirgold

Aufgabe
Wieviele Glieder der geom. Reihe
s=1 + 0,8 + [mm] 0,8^2 [/mm] + [mm] 0,8^3 [/mm] + ... muss mann berücksichtige, damit der Fehler zu s
a) kleiner als 10^-3
b)kleiner als 0,1% wird ?

Also das Prinzip ist mir schon klar. Habe auch eine etwas schwammige Lösung, aber bei der Umsetzung hapert es bei mir leider... Bin mir bei dem Auflösen von Beträgen immernoch sehr unsicher und hoffe dass ihr mir helfen könnt...

Mein Ansatz:
[mm] \left| s - s_n \right| [/mm] < 10^-3
[mm] s=\left( \bruch{1-q^n}{1-q} \right) [/mm] = 5

So, nun muss ich ja das n isolieren aber da liegt mein Problem...

In der Lösung wurde im ersten Schritt der Ansatz zu [mm] s_n [/mm] < [mm] \left| 5 - 10^-3 \right| [/mm] umgeformt. Stimmt das? Wenn ja, wie geht das?

Danke für eure Mühe,
Jan


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Geometrische Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Di 03.10.2006
Autor: Zwerglein

Hi, Smirgold,

> Wieviele Glieder der geom. Reihe
> s=1 + 0,8 + [mm]0,8^2[/mm] + [mm]0,8^3[/mm] + ... muss mann berücksichtige,
> damit der Fehler zu s
>  a) kleiner als 10^-3
>  b)kleiner als 0,1% wird ?
>  Also das Prinzip ist mir schon klar. Habe auch eine etwas
> schwammige Lösung, aber bei der Umsetzung hapert es bei mir
> leider... Bin mir bei dem Auflösen von Beträgen immernoch
> sehr unsicher und hoffe dass ihr mir helfen könnt...
>  
> Mein Ansatz:
>  [mm]\left| s - s_n \right|[/mm] < 10^-3
>  [mm]s=\left( \bruch{1-q^n}{1-q} \right)[/mm] = 5
>  
> In der Lösung wurde im ersten Schritt der Ansatz zu [mm]s_n[/mm] <
> [mm]\left| 5 - 10^-3 \right|[/mm] umgeformt. Stimmt das? Wenn ja,
> wie geht das?

Na, das hast Du doch fast schon:
s - [mm] s_{n} [/mm] < [mm] 10^{-3} [/mm]

(Die Betragstriche kann man hier weglassen, da [mm] s_{n} [/mm] echt monoton zunimmt und gegen 5 strebt!)

Mit s = 5:
5 - [mm] s_{n} [/mm] < [mm] 10^{-3} [/mm] | -5

[mm] -s_{n} [/mm] < [mm] 10^{-3} [/mm] - 5  |*(-1)

[mm] s_{n} [/mm] > 5 - [mm] 10^{-3} [/mm] (***)

Nun weiter:
[mm] s_{n} [/mm] = [mm] \bruch{1 - 0,8^{n}}{1 - 0,8} [/mm] = [mm] \bruch{1 - 0,8^{n}}{0,2} [/mm] = 5*(1 - [mm] 0,8^{n}) [/mm] = 5 - [mm] 5*0,8^{n} [/mm]

In (***) eingesetzt:
5 - [mm] 5*0,8^{n} [/mm] > 5 - [mm] 10^{-3} [/mm] | - 5

[mm] -5*0,8^{n} [/mm] > [mm] -10^{-3} [/mm] | : (-5)

[mm] 0,8^{n} [/mm] < 0,0002

Naja: Und das nach n aufzulösen schaffst Du sicher selbst!

(Zur Kontrolle: Ab n = 39 ist der Fehler kleiner als [mm] 10^{-3}.) [/mm]

mfG!
Zwerglein



Bezug
        
Bezug
Geometrische Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:41 Di 03.10.2006
Autor: Smirgold

Vielen Dank zwerglein!

Die Lösung ist wirklich sehr gut beschrieben. Bin bei diesen Betragsgeschichten immer etwas unsicher...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]