matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenGerade in Hesseform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Vektoren" - Gerade in Hesseform
Gerade in Hesseform < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade in Hesseform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Do 25.05.2006
Autor: Goldfinger

Hallo,
wie kann ich eine Gerade ermitteln, die in Hesseform dargestellt werden soll, durch den Punkt [mm] B\B(5, \wurzel{3}) [/mm] geht und auf folgenden Vektor senkrecht steht:

[mm] \vec{x}= \vektor{0 \\ -8} \vektor{4 \\ -6} [/mm]

Die Hesseform hat folgendes Aussehen: [mm] <\<\vec{n}, \vec{xp}> [/mm] wobei ich vermuten würde, das [mm] \vec{xp} [/mm] aufgestellt wird: [mm] \vec{-OA} \vec{+OB} [/mm] also [mm] -\-0+5 [/mm] und [mm] -(-8)+\wurzel{3}. [/mm]
Ist die Vermutung richtig? Wie bekomme ich am einfachsten bzw. schnellsten die Hesseform hin?

Vielen Dank.
Gruß
Goldfinger




        
Bezug
Gerade in Hesseform: Hesse'sche Normalenform
Status: (Antwort) fertig Status 
Datum: 20:52 Do 25.05.2006
Autor: miniscout

Hallo!

>  wie kann ich eine Gerade ermitteln, die in Hesseform dargestellt
> werden soll, durch den Punkt [mm]B\B(5, \wurzel{3})[/mm] geht und auf folgenden Vektor
> senkrecht steht:

  

> [mm]\vec{x}= \vektor{0 \\ -8} \vektor{4 \\ -6}[/mm]

Das sind doch 2 Vektoren!?!?


> Die Hesseform hat folgendes Aussehen: [mm]<\<\vec{n}, \vec{xp}>[/mm] wobei ich vermuten würde,
> das [mm]\vec{xp}[/mm] aufgestellt wird:
> [mm]\vec{-OA} \vec{+OB}[/mm] also [mm]-\-0+5[/mm] und [mm]-(-8)+\wurzel{3}.[/mm] Ist die Vermutung richtig?
> Wie bekomme ich am einfachsten bzw. schnellsten die Hesseform hin?


Ich kenne (bis jetzt) die Hesse'sche Normalenform und die sieht so aus:

[mm] $\vec{x}*\vec{n}=c$ [/mm]

Die Normalengleichung für Geraden im 3-dimensionalen sieht so aus:

[mm] $(\vec{x}-\vec{p})*\vec{n}=0$ [/mm]

[mm] $\vektor{\vec{x}-\vektor{5 \\ \wurzel{3}}}*\vektor{0 \\ -8}=0$ [/mm]


Jetzt kannst du die einfach mit dem Skalarprodukt in die Hesse'sche Normalenform bringen. Meinstest du das so?
Ciao miniscout [sunny]





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]