matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationGerade und ungerade Funktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Gerade und ungerade Funktionen
Gerade und ungerade Funktionen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade und ungerade Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 Sa 05.02.2011
Autor: David90

Aufgabe
Sei [mm] f:\IR\to\IR [/mm] eine stetig differenzierbare und ungerade Funktion und [mm] g:\IR\to\IR [/mm] eine stetig differenzierbare und gerade Funktion. Zeige [mm] \integral_{-a}^{a}{f(x)*g(x) dx}=0 [/mm] für alle a>0.

Hallo,
das ist eine von drei Teilaufgaben und ich hab irgendwie keine Ahnung wie ich da rangehen soll. Wär partielle Integration der richtige Ansatz?
Gruß David

        
Bezug
Gerade und ungerade Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:15 Sa 05.02.2011
Autor: nooschi


> Sei [mm]f:\IR\to\IR[/mm] eine stetig differenzierbare und ungerade
> Funktion und [mm]g:\IR\to\IR[/mm] eine stetig differenzierbare und
> gerade Funktion. Zeige [mm]\integral_{-a}^{a}{f(x)*g(x) dx}=0[/mm]
> für alle a>0.
>  Hallo,
>  das ist eine von drei Teilaufgaben und ich hab irgendwie
> keine Ahnung wie ich da rangehen soll. Wär partielle
> Integration der richtige Ansatz?
>  Gruß David

kann genau gleich wie die vorige gelöst werden, mit Substitution...
(f(x)=-f(-x), g(x)=g(-x)) [mm] $$\integral_{-a}^{0}{f(x)*g(x) dx}=\integral_{-a}^{0}{-f(-x)*g(-x) dx}$$ [/mm] Substitution wie bei der letzten Aufgabe (t=-x, dt=-dx)
[mm] $$=\integral_{a}^{0}{f(t)*g(t) dt}=-\integral_{0}^{a}{f(t)*g(t) dt}$$ [/mm]

das zusammenbauen traue ich dir dieses mal ganz alleine zu ;-)


Bezug
                
Bezug
Gerade und ungerade Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 So 06.02.2011
Autor: David90

Naja da [mm] \integral_{a}^{0}{f(t)*g(t) dt}=-\integral_{a}^{0}{f(t)*g(t) dt} [/mm] gilt ist dann [mm] \integral_{-a}^{0}{f(x)*g(x) dx}+\integral_{0}^{a}{f(x)*g(x) dx}=-\integral_{a}^{0}{f(t)*g(t) dt}+\integral_{a}^{0}{f(t)*g(t) dt}=0 [/mm] :) oder nicht?

Bezug
                        
Bezug
Gerade und ungerade Funktionen: Genau so
Status: (Antwort) fertig Status 
Datum: 11:57 So 06.02.2011
Autor: Infinit

Hallo David,
ja,  so ist es und das kannst Du dann auch als Grundlage für die Aufgabe mit den abgeleiteten Funktionen nehmen.
Viele Grüße,
Infinit


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]