matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesGeradengleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Geradengleichung
Geradengleichung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geradengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Mi 08.02.2012
Autor: mbau16

Aufgabe
Ermitteln Sie die Geradengleichung!

Guten Abend,

habe eine Frage an Euch. Etwas Vorstellungsvermögen ist gefragt, aber ich denke, dass ist hier kein Problem.

Stellt Euch vor, eine Gerade geht in einem Koordinatensystem von [mm] P_{2} [/mm] (10a/0a) nach [mm] P_{3} [/mm] (2a/-4).

Die allgemeine Form meiner Geradengleichung sei [mm] y_{G}=f(x_{0})+\bruch{1}{1!}f'(x_{0})(x-x_{0}) [/mm]

Da [mm] P_{2} [/mm] (10a/0a)

[mm] x_{0}=10a [/mm]

[mm] f(x_{0})=0a [/mm]

[mm] (x-x_{0})= [/mm] (x-10a)

Klar soweit? Jetzt frage ich mich warm jetzt [mm] f'(x_{0})=2 [/mm] ist? Könnt Ihr mir da bitte helfen?

Vielen Dank

Gruß

mbau16

        
Bezug
Geradengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Mi 08.02.2012
Autor: schachuzipus

Hallo mbau16,


> Ermitteln Sie die Geradengleichung!
>  Guten Abend,
>  
> habe eine Frage an Euch. Etwas Vorstellungsvermögen ist
> gefragt, aber ich denke, dass ist hier kein Problem.
>  
> Stellt Euch vor, eine Gerade geht in einem
> Koordinatensystem von [mm]P_{2}[/mm] (10a/0a) nach [mm]P_{3}[/mm] (2a/-4).
>  
> Die allgemeine Form meiner Geradengleichung sei
> [mm]y_{G}=f(x_{0})+\bruch{1}{1!}f'(x_{0})(x-x_{0})[/mm]

Das ist doch die Gleichung der Tangente an den Graphen einer gegebenen Funktion [mm]f[/mm] an der Stelle [mm]x_0[/mm]

Du brauchst die allg. Form: [mm]y(x)=m\cdot{}x+b[/mm], wobei [mm]m[/mm] die Steigung und [mm]b[/mm] der y-Achsenabschnitt ist.

Die Steigung [mm]m[/mm] kannst du aus den 2 gegebenen Punkten bestimmen (2-Punkte-Form)

Das [mm]b[/mm] durch Einsetzen eines der beiden Punkte in die so erhaltene Gleichung ...

>  
> Da [mm]P_{2}[/mm] (10a/0a)
>  
> [mm]x_{0}=10a[/mm]
>
> [mm]f(x_{0})=0a[/mm]
>  
> [mm](x-x_{0})=[/mm] (x-10a)
>  
> Klar soweit? Jetzt frage ich mich warm jetzt [mm]f'(x_{0})=2[/mm]
> ist?

Was ist [mm]f[/mm] ?

> Könnt Ihr mir da bitte helfen?
>  
> Vielen Dank
>  
> Gruß
>  
> mbau16

Gruß

schachuzipus


Bezug
        
Bezug
Geradengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 Mi 08.02.2012
Autor: Marie314159

warum schreibst du [mm] f(x_{0}) [/mm] = 0a? wäre es nicht einfacher =0 zu schreiben.. naja egal
also für mich ist nicht wirklich erkennbar warum du ausgerechnet [mm] x_{0}= [/mm] 10a bestimmst..
warum ist [mm] x_{0} [/mm] nicht gleich 2a, die du als x-Wert von [mm] P_{3} [/mm] gegeben hast?
bei deinem post kann man leider auch nicht die genaue aufgabe erkennen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]