matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungGeradenspiegelung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Geradenspiegelung
Geradenspiegelung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geradenspiegelung: Dringend
Status: (Frage) beantwortet Status 
Datum: 21:49 Mo 10.01.2005
Autor: candyblues

Hallo ihr lieben!
Ich habe eine großes echt großes Problem! Schreibe morgen eine Matheklausur und weiß nicht wie man Geraden in einem R³ rechnerisch spiegeln kann! Die Übungsaufgabe der Lehrerin lautete:
Spiegele die Geraden g1:x= [mm] \vektor{1 \\ -1 \\ -4}+r\vektor{2 \\ -4 \\ 7} [/mm] und g2:x= [mm] \vektor{-1 \\ 2 \\ 0}+s\vektor{-2 \\ 3 \\ 4} [/mm]

r und s falls relevant hab ich ausgerechnet: r=0 und s=-1

Also ich weiß, dass man erst den Abstand von Punkt zur Gerade ausrechnen muss dann eine senkrecht oder irgendwie so. Ich weiß wirklich nicht wie ich da rangehen soll :(
Vielleicht kann mir da jemand helfen?!

        
Bezug
Geradenspiegelung: Antwort
Status: (Antwort) fertig Status 
Datum: 05:57 Di 11.01.2005
Autor: FriedrichLaher

Hallo, candyblues

da fehlt wohl noch der Punkt an dem gespiegelt werden soll? ( Wenn's eine Punktspiegelung sein soll )
Ich nehme also irgendeinen Punkt an.

Um von einem
Punkt [mm] $\vec [/mm] A$ zu seinem an [mm] $\vec [/mm] Z$ gespiegeltem
Punkt [mm] $\vec [/mm] A'$ zu gelangen
Must Du zu [mm] $\vec [/mm] Z$ nochmals den Vektor [mm] $\vec{AZ} [/mm] = [mm] \vec [/mm] Z - [mm] \vec [/mm] A$
addieren,
es ist also [mm] $\vec [/mm] A' = [mm] \vec [/mm] Z + [mm] (\vec [/mm] Z - [mm] \vec [/mm] A ) = [mm] 2*\vec [/mm] Z - [mm] \vec [/mm] A $
Soll
eine Gerade gespiegelt werden, muß das eben mit jedem Punkt
der Geraden geschehen.
Es
sei also [mm] $\vec [/mm] Z = [mm] \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}$ [/mm]
dann
ist die Spieglung Deiner g1, g1'
$g1': x [mm] =2*\vec [/mm] Z - [mm] \begin{pmatrix} 1 \\ -1 \\ -4 \end{pmatrix} [/mm] - [mm] r\begin{pmatrix} 2 \\ -4 \\ 7 \end{pmatrix}$ [/mm]
etwas vereinfacht
also $g1': x = [mm] \begin{pmatrix} 2z_1 - 1 \\ 2z_2 + 1 \\ 2z_2 + 4 \end{pmatrix} [/mm] + [mm] r\begin{pmatrix} -2 \\ 4 \\ -7 \end{pmatrix}$ [/mm]
ich
hoffe, g2' schaffst Du nun selbst


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]