matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieGitter - Kovolumen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Zahlentheorie" - Gitter - Kovolumen
Gitter - Kovolumen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gitter - Kovolumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:05 Sa 10.11.2012
Autor: Loko

Aufgabe
p prim. Zeige, es gibt [mm] u,v\in\IZ [/mm] s.d. [mm] u^{2}+v^{2}+1=0 [/mm] mod p, und dass das Gitter:
[mm] $L_{u,v} [/mm] = [mm] {(a,b,c,d)\in\IZ^{4} : c \equiv ua+vb$ $mod$ $p$ und $d \equiv ub-va$ $mod$ $p}$ [/mm]
Kovolumen [mm] p^{2} [/mm] in [mm] \IR^{4} [/mm] hat.

Hallo!

Ich habe den ersten Teil, also, dass u und v existieren, geschafft.
(Wenn das jemand sehen möchte sagt bescheid.)
Jetzt hängt es bei volumen und Kovolumen. Ich weiß einfach nicht, wie ich damit arbeiten kann.
Hier meine Idee/Ansatz:

Wir haben das Standard-Gitter [mm] \IZ^{4} [/mm] in [mm] \IR^{4}. [/mm] Das [mm] L_{u,v} [/mm] ist von [mm] \IZ^{4} [/mm] ein unter-Gitter. In der Vorlesung haben uns dann Theoreme gegeben, dass:
[mm] covol(L_{u,v}) [/mm] = [mm] vol(\IR^{4}/L_{u,v}) [/mm] = [mm] vol(\IR^{4}/\IZ^{4})*|\IZ^{4}/L_{u,v}|. [/mm]
Als Ergebnis muss ja [mm] p^{2} [/mm] herauskommen. Aber ich sehe nicht, wo das in dieser Formel entsteht....

Ich hoffe jemand kann mir ein paar Tipps geben :)
Lg Loko!


        
Bezug
Gitter - Kovolumen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Sa 10.11.2012
Autor: felixf

Moin!

> p prim. Zeige, es gibt [mm]u,v\in\IZ[/mm] s.d. [mm]u^{2}+v^{2}+1=0[/mm] mod
> p, und dass das Gitter:
>  [mm]L_{u,v} = {(a,b,c,d)\in\IZ^{4} : c \equiv ua+vb[/mm] [mm]mod[/mm] [mm]p[/mm] und
> [mm]d \equiv ub-va[/mm] [mm]mod[/mm] [mm]p}[/mm]
>  Kovolumen [mm]p^{2}[/mm] in [mm]\IR^{4}[/mm] hat.
>  
> Ich habe den ersten Teil, also, dass u und v existieren,
> geschafft.

Schoen :)

>  (Wenn das jemand sehen möchte sagt bescheid.)
>  Jetzt hängt es bei volumen und Kovolumen. Ich weiß
> einfach nicht, wie ich damit arbeiten kann.
>  Hier meine Idee/Ansatz:
>  
> Wir haben das Standard-Gitter [mm]\IZ^{4}[/mm] in [mm]\IR^{4}.[/mm] Das
> [mm]L_{u,v}[/mm] ist von [mm]\IZ^{4}[/mm] ein unter-Gitter. In der Vorlesung
> haben uns dann Theoreme gegeben, dass:
>  [mm]covol(L_{u,v})[/mm] = [mm]vol(\IR^{4}/L_{u,v})[/mm] =
> [mm]vol(\IR^{4}/\IZ^{4})*|\IZ^{4}/L_{u,v}|.[/mm]
>  Als Ergebnis muss ja [mm]p^{2}[/mm] herauskommen. Aber ich sehe
> nicht, wo das in dieser Formel entsteht....

Nun, da [mm] $vol(\IR^4/\IZ^4) [/mm] = 1$ ist, muss [mm] $\IZ^4/L_{u,v}$ [/mm] genau [mm] $p^2$ [/mm] Elemente haben.

Alternativ kannst du eine Basis von [mm] $L_{u,v}$ [/mm] bestimmen und die Determinante der Matrix berechnen, in der du die Basisvektoren schreibst -- das Ergebnis ist bis auf dem Betrag gleich dem Kovolumen. Aber k.A. ob ihr dieses Resultat hattet :)

Aber zum Thema [mm] $\IZ^4/L_{u,v}$. [/mm] Wenn du dir die Gleichungen $c [mm] \equiv [/mm] u a + b v [mm] \pmod{p}$ [/mm] und $d [mm] \equiv [/mm] u b - a v [mm] \pmod{p}$ [/mm] anschaust, siehst du, dass modulo $p$ die Werte von $c$ und $d$ eindeutig durch $a$ und $b$ bestimmt sind. Du kannst also fuer jedes Paar $(a, b) [mm] \in \IZ^2$ [/mm] alle $(c, d) [mm] \in \IZ^2$ [/mm] mit $(a, b, c, d) [mm] \in L_{u,v}$ [/mm] genau beschreiben: moduo $p [mm] \IZ \times [/mm] p [mm] \IZ$ [/mm] gibt es genau ein solches Paar $(c, d)$.

Mehr moechte ich jetzt nicht verraten, bis auf [mm] $|\IZ^2 [/mm] / (p [mm] \IZ \times [/mm] p [mm] \IZ)| [/mm] = [mm] p^2$ [/mm] :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]