matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPolitik/WirtschaftGleichsetzen von 2Glg. VWL
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Politik/Wirtschaft" - Gleichsetzen von 2Glg. VWL
Gleichsetzen von 2Glg. VWL < Politik/Wirtschaft < Geisteswiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Politik/Wirtschaft"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichsetzen von 2Glg. VWL: Lagrange
Status: (Frage) beantwortet Status 
Datum: 00:23 Fr 17.01.2014
Autor: vanessa-w

Aufgabe
Ein Unternehmen verkauft Produkt(c) und Produkt(s) an ein Handelsgeschäft. Produkt(c) kostet 6GE und Produkt(s) 2GE
Das Handelsgeschäft hat ein Einkaufsbudget von 384GE.

Nutzenfunktion: [mm] U(c,s)=c^{0,3}*s^{0,5} [/mm]

1) Berechnen Sie die optimale Menge von s und c!


Hallo zusammen! :)
Ich habe bei der Aufgabe das Lagrange Verfahren angewandt und hab das partielle Ableiten noch hingekriegt, also:

1) Zielfkt.: [mm] U(c,s)=c^{0,3}*s^{0,5} [/mm]
2) Nebenbedingung: 384-6c-2s=0
3) Lagrange:  
[mm] L=c^{0,3}*s^{0,5}+\lambda*(384-6c-2s) [/mm]

4) Partiell ableiten:
I]  Nach [mm] c=0,3*c^{-0,7}*s^{0,5}-6\lambda [/mm]
II] Nach [mm] s=0,5c^{0,3}*s^{-0,5}-2\lambda [/mm]
III]Nach [mm] \lambda=384-6c-2s [/mm]

5)   I nach [mm] \lambda [/mm]
  [mm] 0,3c^{-0,7}*s^{0,5}=6\lambda [/mm]  |:6
[mm] (0,3s^{0,5})/(6c^{0,7})=\lambda [/mm]  

Meine Frage ist nun, wie man auf [mm] 0,3s^{0,7}/6c^{0,7} [/mm] kommt, da ich diesen Rechenschritt irgendwie nicht verstehe :/

Danke schonmal im Voraus für Hilfe!:)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Gleichsetzen von 2Glg. VWL: Antwort
Status: (Antwort) fertig Status 
Datum: 00:59 Fr 17.01.2014
Autor: DieAcht

Hallo,


> Ein Unternehmen verkauft Produkt(c) und Produkt(s) an ein
> Handelsgeschäft. Produkt(c) kostet 6GE und Produkt(s) 2GE
>  Das Handelsgeschäft hat ein Einkaufsbudget von 384GE.
>
> Nutzenfunktion: [mm]U(c,s)=c^0,3*s^0,5[/mm]

Du meinst folgendes:

      [mm] U(c,s)=c^{0,3}*s^{0,5} [/mm]

Verwende geschweifte Klammern für Exponenten.

Du erhältst [mm] $a^{b+c}$, [/mm] indem du folgendes eingibst:

      a^{b+c}

>  
> 1) Berechnen Sie die optimale Menge von s und c!
>  Hallo zusammen! :)
> Ich habe bei der Aufgabe das Lagrange Verfahren angewandt
> und hab das partielle Ableiten noch hingekriegt, also:
>
> [mm]1)Zielfkt.:U(c,s)=c^0,3*s^0,5[/mm]

      [mm] U(c,s)=c^{0,3}*s^{0,5} [/mm]

>  2)Nebenbedingung:384-6c-2s=0
>  3)Lagrange:
> [mm]L=c^0,3*s^0,5+λ(384-6c-2s)[/mm]

Du meinst folgendes:

      [mm] L=c^{0,3}*s^{0,5}+\lambda(384-6c-2s) [/mm]

[mm] \lambda [/mm] erhältst du wie folgt:

      \lambda

>  
> 4) Partiell ableiten:
> I]  Nach [mm]c=0,3c^-0,7*s^0,5-6λ[/mm]
>  II] Nach [mm]s=0,5c^0,3*s^-0,5-2λ[/mm]
>  III]Nach λ= 384-6c-2s

[ok]

Durch deinen Quellcode konnte ich erkenne, dass du das richtige meinst!

[mm] L_c=0,3c^{-0,7}*s^{0,5}-6\lambda [/mm]
[mm] L_s=0,5c^{0,3}*s^{-0,5}-2\lambda [/mm]
[mm] L_{\lambda}=384-6c-2s [/mm]

>  
> 5)   I nach λ
>    [mm]0,3c^-0,7*s^0,5[/mm] = 6λ  |:6
>  [mm](0,3s^0,5)/(6c^0,7)=λ[/mm]

Das kann ich nicht nachvollziehen.

Es gilt:

      [mm] 0,3c^{-0,7}*s^{0,5}-6\lambda=0 [/mm]

      [mm] \Rightarrow 0,3c^{-0,7}*s^{0,5}=6\lambda [/mm]

      [mm] \Rightarrow \frac{0,3c^{-0,7}*s^{0,5}}{6}=\frac{6\lambda}{6} [/mm]

      [mm] \Rightarrow \frac{0,3c^{-0,7}*s^{0,5}}{6}=\lambda [/mm]

      [mm] \Rightarrow \lambda=\frac{1}{20}c^{-0,7}*s^{0,5} [/mm]

>
> Meine Frage ist nun, wie man auf [mm]0,3s^0,7/6c^07[/mm] kommt, da
> ich diesen Rechenschritt irgendwie nicht verstehe :/
>
> Danke schonmal im Voraus für Hilfe!:)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Hilft dir das schon weiter oder brauchst du noch ein Tipp?


Gruß
DieAcht

Bezug
                
Bezug
Gleichsetzen von 2Glg. VWL: Kleinigkeit vergessen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:08 Fr 17.01.2014
Autor: Loddar

Hallo!


> Es gilt: [mm]0,3c^{-0,7}*s^{0,5}-6\lambda[/mm]

Hier gehört selbstverständlich noch ein $... \ [mm] \red{= \ 0}$ [/mm] hin.

Denn aus einem schlichten Term kann nicht urplötzlich eine vollständige Gleichung erwachsen. ;-)


Gruß
Loddar

Bezug
                        
Bezug
Gleichsetzen von 2Glg. VWL: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:14 Fr 17.01.2014
Autor: DieAcht

Hiho,

Danke Dir, habe es übernommen ;-)

Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Politik/Wirtschaft"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]