matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Gleichung 4. Grades
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis des R1" - Gleichung 4. Grades
Gleichung 4. Grades < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung 4. Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Fr 18.08.2006
Autor: Beatrice

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Zwei Punkte [mm] (x_{n}, y_{n}) [/mm] und [mm] (x_{n1}, y_{n1}) [/mm] liegen im Abstand von n bzw. n+1 zu einem dritten Punkt [mm] (x_{a}, y_{a}). [/mm] D.h.
[mm] (x_{n}-x_{a})^{2} [/mm] + [mm] (y_{n}-y_{a})^{2} [/mm] = [mm] n^{2} [/mm] und
[mm] (x_{n1}-x_{a})^{2} [/mm] + [mm] (y_{n1}-y_{a})^{2} [/mm] = [mm] (n+1)^{2} [/mm]
Ferner gilt :
[mm] x_{n}=-f*y_{n1} [/mm] und
[mm] x_{n1}=-f*y_{n} [/mm]
[mm] x_{a}, y_{a}, [/mm] f und n sind gegeben. Gesucht sind [mm] x_{n}, y_{n}, x_{n1}, y_{n1}. [/mm]
Leider endet die Berechnung der Unbekannten immer in einem Polynom vom Grad 4, z.B.
[mm] f*\wurzel{n^{2}-(f*y_{n1}+x_{a})^{2}}+f^{2}*xa=\wurzel{(n+1)^{2}-(y_{n1}-f*x_{a})^{2}}-xa [/mm]

Gebe ich die Aufgabe in Maple ein, stürzt dieses mit verschiedenen Fehlermeldungen ab (diverse Java Exceptions oder Verbindung zu Kernel verloren).

Habt Ihr vielleicht eine Idee, wie ich hier weiterkomme?

        
Bezug
Gleichung 4. Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Fr 18.08.2006
Autor: riwe

hallo beatrice,
mache doch vorher eine koordinatentransformation
[mm]x^\prime = x - x_a [/mm] und  [mm]y^\prime = y - y_a[/mm].
damit (jetzt wieder ohne stricherl) läßt sich das einfach lösen(hoffentlich)
[mm] y^{2}_n=\frac{n^{2}(1-f^{2})-(2n+1)f^{2}}{1-f^{4}} [/mm]
[mm] y^{2}_m=\frac{2n+1}{1-f^{2}}+y^{2}_n [/mm]

Bezug
                
Bezug
Gleichung 4. Grades: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 01:21 Sa 19.08.2006
Autor: Beatrice

Hallo Riwe,

vielen Dank für Ihre Antwort.
Leider gelingt es mir nicht Ihre beiden Formeln (für [mm]y_{n}^{2}[/mm] und [mm]y_{m}^{2}[/mm]) selbst herzuleiten.
Setze ich dort konkrete Zahlen für [mm]f[/mm] und [mm]n[/mm] ein, erfüllen die berechneten [mm]y_{n}^{2}[/mm] und [mm]y_{m}^{2}[/mm] auch nicht das zu lösende Problem. Auch dann nicht, wenn ich noch [mm]x_{a}[/mm] bzw. [mm]y_{a}[/mm] addiere um ggf. rückzusubstituieren. Irgend etwas mache ich wohl falsch.

Für [mm]f=2, n=5, x_{a}=\bruch{1}{2}, y_{a}=1[/mm] ist eine richtige Lösung zum Beispiel: [mm]x_{n}=-4.202475247, y_{n}=2.699036949, x_{n1}=-5.398073897, y_{n1}=2.101237623[/mm]

Substituiere ich die [mm]x_{n}-x_{a}[/mm] bzw. [mm]x_{n1}-x_{a}[/mm] durch [mm]x'_{n}[/mm] bzw. [mm]x'_{n1}[/mm] vereinfachen sich zwar die ersten beiden Gleichungen zu
(1) [mm]x'_{n}^{2}+y'_{n}^{2}=n^{2}[/mm] und
(2) [mm]x'_{n1}^{2}+y'_{n1}^{2}=(n+1)^{2}[/mm]
doch zugleich werden die beiden anderen Gleichungen komplizierter:
(3) [mm]x'_{n1}+x_{a}=-f*(y'_{n}+y_{a})[/mm]
(4) [mm]x'_{n}+x_{a}=-f*(y'_{n1}+y_{a})[/mm]


Bezug
                        
Bezug
Gleichung 4. Grades: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:42 So 20.08.2006
Autor: riwe

ja da hast du recht, das ist (leider) nur die lösung für M(0/0).
werner

Bezug
                        
Bezug
Gleichung 4. Grades: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:20 So 27.08.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]