matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeGleichungssystem lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Extremwertprobleme" - Gleichungssystem lösen
Gleichungssystem lösen < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssystem lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:17 Sa 04.01.2014
Autor: Lukii1992

Aufgabe
Für die Sammlung von Altpapier soll eine quaderförmige, oben offene Kiste hergestellt werden. Die Länge soll das 1,5fache der Breite betragen. Sie soll 0,5 [mm] m^3 [/mm] fassen. Wie sind die Maße zu wählen, damit zur Herstellung der Kiste möglichst wenig Material verwendet wird?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe die Haupt- und Nebenbeziehungen aufgestellt und versuche nun, durch Einsetzen einen Wert einer Variable heraus zu bekommen, um diesen dann in die Hauptbeziehung einzusetzen (siehe Anhang). Allerdings funktioniert das nicht. Was muss ich machen?



Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Gleichungssystem lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:41 Sa 04.01.2014
Autor: Sax

Hi,

es ist alles richtig, wenn auch sehr umständlich.

Löse die vorletzte Gleichung besser nach h auf : h = ...(mit Variabler l), benutze außerdem die Gleichung b = ... (mit Variabler l) von oben, setze alles in deine Flächenformel ein (da hast du übrigens einen Schreibfehler drin), erhalte A = ...(mit einziger Variablen l) und setze dann die übliche Vorgehensweise fort.

Gruß Sax.

Bezug
                
Bezug
Gleichungssystem lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:55 Sa 04.01.2014
Autor: Lukii1992

Danke schon mal!

Ich hatte bei den Extremwertaufgaben schon öfters Probleme an dieser Stelle, an der es um das Lösen des Gleichungssystems geht und vor allem auch darum, nach welchen Variablen man umstellt. Was kann man sich dafür grundsätzlich merken, wie man vorgehen muss?

Bezug
                        
Bezug
Gleichungssystem lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Sa 04.01.2014
Autor: Sax

Hi,

eine deiner Nebenbedingungen ist doch l = 1,5b, da ist also schon mal gar nichts aufzulösen.
Die andere Nebenbedingung ist $ V = b*l*h = 0,5 $ ,  also $ [mm] 1,5*b^2*h [/mm] = 0,5 $. Nach welcher Variablen sollt diese zweite Nb nun aufgelöst werden ? Nach b oder nach h ?
Die Zielfunktion A enthält die Variablen l, b und h alle in der ersten Potenz (kein [mm] b^2), [/mm] das spricht dafür, nach h aufzulösen :  h=h(b) . Außerdem ist die erste Nebenbedingung schon eine Funktion mit der Variablen b, so dass ein Einsetzen in die Zielfunktion sofort möglich ist und A als Funktion der einzigen Variablen b ergibt.

Gruß Sax.

Bezug
                
Bezug
Gleichungssystem lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:37 Sa 04.01.2014
Autor: Lukii1992

Wie kann ich die Gleichung am Ende (siehe Anhang) in eine für die allgemeine Funktionsgleichung günstige Form bringen?

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                        
Bezug
Gleichungssystem lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Sa 04.01.2014
Autor: M.Rex

Hallo

> Wie kann ich die Gleichung am Ende (siehe Anhang) in eine
> für die allgemeine Funktionsgleichung günstige Form
> bringen?

Ich nehme mal an, du suchst den Extrempunkt von
[mm] A(l)=\frac{2}{l}+\frac{l^{2}}{1,5} [/mm]

Mit Potenzgesetzen und Bruchrechnung bekommst du

[mm] A(l)=\frac{2}{l}+\frac{l^{2}}{1,5} [/mm]
[mm] =\frac{2}{l^{1}}+\frac{1}{1,5}l^{2} [/mm]
[mm] =2l^{-1}+\frac{2}{3}l^{2} [/mm]

Nun kannst du gemäß der Summenregel und der Potenzregel ableiten.

Marius

Bezug
                                
Bezug
Gleichungssystem lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:32 Sa 04.01.2014
Autor: Lukii1992

Wie legt man den Definitionsbereich fest bzw. geht das bei dieser Aufgabe überhaupt? Aus der Aufgabenstellung geht ja in keinster Weise hervor, in welchem Bereich eine der Längen liegen darf.

Bezug
                                        
Bezug
Gleichungssystem lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Sa 04.01.2014
Autor: Sax

Hi,

Definitionsbereich für l, h und b sind doch offenbar alle positiven Zahlen.
Für diese ist automatisch gewährleistet, dass sich auch für A und V positive Werte ergeben.

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]