matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGlobale Extrema 2 Veränderl.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Globale Extrema 2 Veränderl.
Globale Extrema 2 Veränderl. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Globale Extrema 2 Veränderl.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:22 Fr 01.02.2008
Autor: SummerChris

Aufgabe
Bestimmung von globalen Minima und Maxima bei Funktionen zweier Veränderlicher.

Wir behandeln derzeit Funktionen zweier Veränderlicher ohne Nebenbedingung und sollen bestimmen, ob lokale (relative) Extrema global sind oder nicht.
Wir man mit Hilfe der Hessematrix auf lokale Extrema schließen und diese mittels des [mm] AC-B^2 [/mm] Kriteriums überprüfen kann, habe ich verstanden.
Nun soll aber eine Bestimmung von Konkavität bzw. Konvexität der Funktion dazu verhelfen, dass man bestimmen kann, ob die gefundenen lokalen Extrema auch global sind oder nicht. Aber wie funktioniert das? Ich verstehe das von Anfang an einfach nicht...
Ich wäre wirklich dankbar für eine anschauliche Erklärung!!

Christian

        
Bezug
Globale Extrema 2 Veränderl.: Tipps
Status: (Antwort) fertig Status 
Datum: 11:45 Sa 02.02.2008
Autor: Infinit

Hallo Christian,
die Krümmung so einer Fläche, durch Konvexität bzw. Konkavität beschrieben, lässt Aussagen zu, ob es sich bei Extrema eventuell sogar um globale Extrema handelt. Hier helfen dann das Betrachten des Definitionsereiches und Vergleiche der Extremalwerte untereinander.
Ein simples Beispiel:
$$ f(x,ay) = [mm] x^2 [/mm] + [mm] y^2 [/mm] $$ auf einem Definitionsbereich, der den Nullpunkt einschließt. Der Nullpunkt ist hier nicht nur ein lokales, sondern sogar ein globales Minimum.
Die Fläche ist konvex und damit ist ein lokales Minimum auch immer ein globales. Bei einer konkaven Funktion dagegen ist ein lokales Maximum auch immer ein globales.
Viele Grüße,
Infinit

Bezug
                
Bezug
Globale Extrema 2 Veränderl.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:10 So 03.02.2008
Autor: SummerChris

Hallo Infinit,

danke für deine Antwort! Gut, ich habe nun verstanden, dass es sich bei dieser Funktion um ein globales Minimum handeln muss, da sie konvex ist. Konvex ist sie, weil alle geraden Verbindungen zweier auf der Funktion liegenden Punkte oberhalb des Graphen verlaufen. Bei dieser Funktion ist das sehr anschaulich und leicht nachvollziehbar.
Wenn ich aber eine kompliziertere Funktion gegeben habe. Wie kann ich dann auf Konvexität bzw. Konkavität schließen?
Danke nochmals für deine Hilfe!!

Viele Grüße
Christian

Bezug
                        
Bezug
Globale Extrema 2 Veränderl.: Nicht so einfach
Status: (Antwort) fertig Status 
Datum: 10:29 So 03.02.2008
Autor: Infinit

Hallo Christian,
hierfür würde ich Dir ja gerne eine Lösung anbieten, ich kenne jedoch keine und ich glaube auch nicht, dass es einen deratigen Automatismus hierfür gibt. Damit wären all die numerischen Optimierungsverfahren hinfällig. Was man prkatischerweise hier macht, ist, dass man die Extrema überprüft, die im Definitionsgebiet liegen und dass man sich die Randwerte der Funktion anschaut. Danach lässt sich entscheiden, wie es mit globalen Extrema aussieht. Dass in der Umgebung eines Maximums die Fläche konvex sein muss, in der Umgebung eines Minimums konkav, ist zwar einleuchtend, hift Dir aber nicht bei der Klassifizierung nach globalen oder lokalen Extrema.
Tja, nicht alles kann man analytisch bestimmen.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]