matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Goniometrische Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Goniometrische Gleichung
Goniometrische Gleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Goniometrische Gleichung: Frage
Status: (Frage) beantwortet Status 
Datum: 17:19 So 01.05.2005
Autor: simmy

Hallo,
wir haben das Thema im Unterricht nur am Rande behandelt, und dann Hausaufgaben aufbekommen. Eine Aufgabe davon:

Für welche x aus dem Intervall [0; 2 [mm] \pi] [/mm] gilt
cos 3x = sin x  ?

Ich verstehe nicht ganz, wie man diese Aufgabe lösen soll. Muss ich alle Sinus- und Kosinuswerte in dem Intervall suchen, dann gleichsetzen und nacheinander ausrechnen um mögliche Lösungen zu finden?
Also

sin x = sin [mm] (\pi [/mm] - x)
cos 3x= cos (3x + 2 [mm] \pi) [/mm] = cos 3 (x + 2/3 [mm] \pi) [/mm]

1.) sin x = cos 3x
2.) sin [mm] (\pi [/mm] - x) = cos 3x
3.) sin x = cos 3 (x + 2/3 [mm] \pi) [/mm]
4.) sin [mm] (\pi [/mm] - x) = cos 3 (x + 2/3 [mm] \pi) [/mm]

Und kann ich schon vorher wissen wie viele Lösungen es gibt?

Danke für eure Hilfe

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Goniometrische Gleichung: Ansatz
Status: (Antwort) fertig Status 
Datum: 18:24 So 01.05.2005
Autor: zim_georg

Hi,
Ich hab hier eine Idee, wie es vielleicht gehen könnte:

Cos(3x)=Sin(x)

Ich würde zuerst einmal quadrieren:

[mm] Cos^2(3x)=Sin^2(x) [/mm]

Jetzt kannst du nämlich [mm] Sin^2(x) [/mm] durch [mm] 1-Cos^2(x) [/mm] ersetzen.
Die Formel sieht danach so aus:

[mm] Cos^2(3x)=1-Cos^2(x) [/mm]

Ich glaube den Rest muss ich nicht mehr erklären oder? Du vereinfachst einfach die Gleichung soweit bis ein Wert für den Cosinus dasteht. Dann rechnest du einfach die Winkel aus und passt auf, dass du nicht aus dem vorgegebenen Intervall rauskommst.

Falls du noch Fragen hast, poste sie nochmal

Mfg Schurl



Bezug
        
Bezug
Goniometrische Gleichung: Differenz -> Produkt
Status: (Antwort) fertig Status 
Datum: 08:48 Mo 02.05.2005
Autor: FriedrichLaher

Hallo simmy

ich würde eher folgendes vorschlagen

[mm] $\cos [/mm] 3x = [mm] \sin [/mm] x$
[mm] $\cos [/mm] 3x - [mm] \sin [/mm] x = 0$
[mm] $\cos [/mm] 3x - [mm] \cos (90^\circ [/mm] - x) = 0$

nun verwandle die Differenz in ein Produkt!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]