matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenGramms Determinante
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Determinanten" - Gramms Determinante
Gramms Determinante < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gramms Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:54 Di 21.02.2006
Autor: sara_20

Aufgabe
Sei F Gramms Determinante. Beweise dass Gramm-Determinante folgende Eigenschaft haben:
F(a1,...,an,b1,...,bn)<= F(a1,...,an)F(b1,...,bn)

Hallo mal wieder,
Also ich bin kurz vor Durchdrehen. Ich kann die Aufgabe nicht loesen. Wenn a1,...,an und b1,...,bn ortogonal waeren, ware es leicht denn:
F(a1,...,an,b1,...,bn)<= ||a1||*...*||an||*||b1||*...*||bn||=F(a1,...,an)F(b1,...,bn)
Aber in der Aufgabe ist nicht gesagt dass sie ortogonal sind.

Wie beweisst man das?


Ich habe diese Frage in keinen anderen Foren gestellt.


        
Bezug
Gramms Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 07:12 Mi 22.02.2006
Autor: mathiash

Hallo und guten Morgen,

zunaechst waere es gut gewesen, die Definition der Gram'schen Determinante sicherheitshalber auch noch mit
in die Frage hineinzuschreiben.

Also, die Gram'sche Determinante ist bei Dir eine Klasse von Abbildungen

[mm] F_m\colon (K^n)^m\to [/mm] K

definiert durch

[mm] F_m(a_1,\ldots [/mm] , [mm] a_m) [/mm] := [mm] \:\: det(\: (\: |\: 1\leq i,j\leq m)\: [/mm] )

und Du moechtest zeigen:

[mm] F_{2m}(a_1,\ldots [/mm] , [mm] a_m, b_1,\ldots [/mm] , [mm] b_m)\: \leq \: F_m(a_1,\ldots [/mm] , [mm] a_m)\:\cdot\: F_m(b_1,\ldots [/mm] , [mm] b_m), [/mm]

richtig ?

Leider bekomme ich auch nicht ad hoc eine komplette Loesung hin, aber vielleicht kann folgendes helfen.

(1) Die Gram-Determinante ist immer [mm] \geq [/mm] 0.

Das taucht vielerorts als Uebungsaufgabe auf.

(2) Die Matrix   zur Gram-Det. auf der linken Seite der zu zeigenden Ungleichung hat ja die Blockstruktur

[mm] \pmat{A & B\\ C & D} [/mm]

mit [mm] A=(),\: B=(),\: C=B,\:\: D=). [/mm]

Gilt denn zumindest in diesem Fall

[mm] F_{2m}(a_1,\ldots b_m)=\det (A)\det (D)-\det (B)\det [/mm] (C)      ?

Denn dann haette man doch die Loesung.

Gruss,

Mathias



Bezug
                
Bezug
Gramms Determinante: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 19:29 Mi 22.02.2006
Autor: sara_20

Hallo mal wieder,

also ich glaube nicht dass man so mit Determinanten rechnen kann, denn ein Kolege von mir hat auf einer Pruefung so die Determinante zerlegt und dann die Bloecke gerechnet und der Professor hat dazu gesagt:
"warum glaubst du rechnen wir ueberhaupt so grosse determinanten, wenn man sie auf kleinere zerlegen koennte und dann die einzigen rechnen koennte?"

Bezug
                        
Bezug
Gramms Determinante: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:33 Mi 22.02.2006
Autor: sara_20

Ich dachte vielleicht dass mir folgende Eigenschaften helfen koennten:
[mm] gramm(a1,...an,b1)=||b1||\^{2}gramm(a1,...,an) [/mm] und
[mm] gramm(a1,...an)<=||a1||\^{2}...||an||\^{2} [/mm]
Sehe aber auch damit keine Loesung.

Wo ich mit gramm Gramische determinante bezeichnet habe.

Bezug
                        
Bezug
Gramms Determinante: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:34 Sa 25.02.2006
Autor: matux

Hallo Sara!


Leider konnte Dir keiner mit Deinem Problem / Deiner Rückfrage in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]