matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwert
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Grenzwerte" - Grenzwert
Grenzwert < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:46 So 23.11.2008
Autor: urmelinda

Aufgabe
Bestimme den rechts- und linksseitigen Grenzwert von
[mm] \limes_{x\rightarrow\0} \bruch{sin(x)}{\wurzel{x}} [/mm]
x soll gegen 0 gehen!

Hi!
Also bei der Aufgabe komme ich nicht weiter, wenn ich 0 einsetze, kommt ja [mm] \bruch{0}{0}, [/mm] und die Regel von l´Hôpital sollen wir nicht benutzen. Ich vermute ich muss jetzt anstatt der 0 eine Zahl einsetzen die ein ganz kleines bißchen  >0 , sowie <0 ist. Aber ich habe keine Ahnung wie ich das machen kann und wie ich das hinschreiben muss..
Schon mal Danke für eure Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 So 23.11.2008
Autor: MathePower

Hallo urmelinda,

> Bestimme den rechts- und linksseitigen Grenzwert von
>  [mm]\limes_{x\rightarrow\0} \bruch{sin(x)}{\wurzel{x}}[/mm]
>  x soll
> gegen 0 gehen!
>  Hi!
>  Also bei der Aufgabe komme ich nicht weiter, wenn ich 0
> einsetze, kommt ja [mm]\bruch{0}{0},[/mm] und die Regel von
> l´Hôpital sollen wir nicht benutzen. Ich vermute ich muss
> jetzt anstatt der 0 eine Zahl einsetzen die ein ganz
> kleines bißchen  >0 , sowie <0 ist. Aber ich habe keine
> Ahnung wie ich das machen kann und wie ich das hinschreiben
> muss..


Setze für [mm]\sin\left(x\right)[/mm] die entsprechende Potenzreihe ein.

[mm]\sin\left(x\right)=\summe_{n=0}^{\infty}{\left(-1\right)^{n}*\bruch{x^{2n+1}}{\left(2n+1\right)!}}[/mm]


>  Schon mal Danke für eure Hilfe!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruß
MathePower

Bezug
                
Bezug
Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 So 23.11.2008
Autor: urmelinda

leider hilft mir das nicht weiter.. wie komme ich denn auf diese Summenformel die du da hingeschrieben hast?
und was steht da dann hinter limes wenn ich das eingesetzt habe?

Gruß
Linda

Bezug
                        
Bezug
Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 So 23.11.2008
Autor: MathePower

Hallo urmelinda,


> leider hilft mir das nicht weiter.. wie komme ich denn auf
> diese Summenformel die du da hingeschrieben hast?


Das ist die Reihenentwicklung des Sinus um 0.

Wie kommt man darauf:

Ich setze an:

[mm]\sin\left(x\right)=\summe_{k=0}^{\infty}{a_{k}*x^{k}}[/mm]

Weiterhin entwickle ich um x=0 (Entwicklungspunkt)

Durch das bilden der Ableitungen links und rechts und einsetzen des Entwicklungspunktes ergeben sich die Koeffizienten [mm]a_{k}[/mm].


>  und was steht da dann hinter limes wenn ich das eingesetzt
> habe?


[mm]\limes_{x \rightarrow 0}{\bruch{\sin\left(x\right)}{\wurzel{x}}}=\limes_{n \rightarrow 0}{\bruch{\summe_{n=0}^{\infty}\left(-1\right)^{n}*\bruch{x^{2n+1}}{\left(2n+1\right)!}}{\wurzel{x}}}[/mm]


>  
> Gruß
>  Linda


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]