matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGrenzwert berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Grenzwert berechnen
Grenzwert berechnen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert berechnen: Aufgaben Lösung
Status: (Frage) beantwortet Status 
Datum: 12:57 Fr 28.12.2007
Autor: wikulja06

Aufgabe
1. lim gegen -3; (x²+5x)
2. lim gegen 2; 5x²+5x-30/x-2
3. lim gegen unendlich; x*(x-2)/x²+5

<Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

task>Hallo,
bin gerade bei der Prüfunsvorbereitun und habe riesen Problem Grenzwert Berechnung.

kann mir jemand bei folgenden Aufgaben weiter helfen?

1. Lim x gegen -3, (x²+5X)
meine Lösung:  2x+5 dann -3 einsetzen komme auf Grenzwert von -1
ist es richtig?
2. lim x gegen unendlichkeit 5x²+5x-30 / x-2
meine Lösung: 10x+5 / x
es gibt kein renzwert, Rictig?
3. lim x gegen unendlichkeit x(x-2) / x² + 5
meine Lösung: 2x-2/ 2x Grenzwert = -2

Vielen Dank im Voraus </task>
Aufgabe
Hallo,
bin gerade bei der Prüfunsvorbereitun und habe riesen Problem Grenzwert Berechnung.

kann mir jemand bei folgenden Aufgaben weiter helfen?

1. Lim x gegen -3, (x²+5X)
meine Lösung:  2x+5 dann -3 einsetzen komme auf Grenzwert von -1
ist es richtig?
2. lim x gegen unendlichkeit 5x²+5x-30 / x-2
meine Lösung: 10x+5 / x
es gibt kein renzwert, Rictig?
3. lim x gegen unendlichkeit x(x-2) / x² + 5
meine Lösung: 2x-2/ 2x Grenzwert = -2

Vielen Dank im Voraus  


        
Bezug
Grenzwert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Fr 28.12.2007
Autor: M.Rex

Hallo Viktoria und [willkommenmr]

[mm] 1)\limes_{x\to-3}(x²+5x) [/mm]
Wieso berechnest du erst die Ableitung?

Hier kannst du ja ohne Probleme den Grenzwert direkt einsetzen.

[mm] \limes_{x\to-3}(x²+5x) [/mm]
[mm] =(-3)^{2}+5*(-3)=-6 [/mm]

[mm] 2)\limes_{x\to2}\bruch{5x²+5x-30}{x-2} [/mm]

Mach hier mal die Polynomdivision
(5x²+5x-30):(x-2)=... und betrachte dann den Grenzwert des entstehenden Terms.

Oder nutze die Regel von d l'Hospital:

[mm] \limes_{x\to{a}}\bruch{f(x)}{g(x)}=\limes_{x\to{a}}\bruch{f'(x)}{g'(x)} [/mm]


3)
[mm] \limes_{x\rightarrow\infty}(\bruch{x*(x-2)}{x²+5} [/mm]
[mm] =\limes_{x\rightarrow\infty}(\bruch{x²-2x}{x²+5} [/mm]
[mm] =\limes_{x\rightarrow\infty}(1+\bruch{2x-5}{x²+5}) [/mm]
[mm] =\underbrace{\limes_{x\rightarrow\infty}(1)}_{=1}+\underbrace{\limes_{x\rightarrow\infty}\bruch{2x-}{x²+5}}_{\text{=0, da der Zählergrad geringer als der Nennergrad ist}} [/mm]

Marius



Bezug
                
Bezug
Grenzwert berechnen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:33 Fr 28.12.2007
Autor: wikulja06

Aufgabe 2
ist es richtig wenn ich die 1 ableitung mache und im Zähler 10x+5 und im Nenner 0 rauskommt also ist dann der Grenzwert=o

Aufgabe 3
wocher kommt denn die 1 nach dem 2 = Zeichen?

Bezug
                        
Bezug
Grenzwert berechnen: zu Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 14:44 Fr 28.12.2007
Autor: Loddar

Hallo wikulja06!


Das stimmt so nicht. Im Nenner musst Du als Ableitung von $x-2_$ den Wert [mm] $\red{1}$ [/mm] erhalten.


Gruß
Loddar


Bezug
                        
Bezug
Grenzwert berechnen: zu Aufgabe 3
Status: (Antwort) fertig Status 
Datum: 14:47 Fr 28.12.2007
Autor: Loddar

Hallo wikulja!


Hier wurde umgeformt:

[mm] $$\bruch{x^2-2x}{x^2+5} [/mm] \ = \ [mm] \bruch{x^2\red{+5-5}-2x}{x^2+5} [/mm] \ = \ [mm] \bruch{x^2+5}{x^2+5}+\bruch{-2x-5}{x^2+5} [/mm] \ = \ [mm] 1-\bruch{2x+5}{x^2+5}$$ [/mm]

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]