matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwert gesucht
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - Grenzwert gesucht
Grenzwert gesucht < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert gesucht: mittels L'Hospital
Status: (Frage) beantwortet Status 
Datum: 14:33 Do 28.12.2006
Autor: black2407

Aufgabe
gesuchter Grenzwert für limx->unendlich für (1+ [mm] 1/x^2)^x [/mm]


forme um zu [mm] (x^2+1)^x [/mm] / [mm] (x^2)^x [/mm]
denke mal das hochx abzuleiten stellt mir ein problem dar...
#
# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwert gesucht: umformen
Status: (Antwort) fertig Status 
Datum: 14:42 Do 28.12.2006
Autor: Loddar

Hallo black!


Forme den Ausdruck zunächst einmal um:   [mm] $\left(1+\bruch{1}{x^2}\right)^x [/mm] \ = \ [mm] \left[ \ e^{\ln\left(1+\bruch{1}{x^2}\right)} \ \right]^x [/mm] \ = \ [mm] e^{x*\ln\left(1+\bruch{1}{x^2}\right)}$ [/mm]



Und betrachte nun den Grenzwert:   [mm] $\limes_{x\rightarrow\infty}x*\ln\left(1+\bruch{1}{x^2}\right) [/mm] \ = \ [mm] \limes_{x\rightarrow\infty}\bruch{\ln\left(\bruch{x^2+1}{x^2}\right)}{\bruch{1}{x}} [/mm] \ = \ [mm] \limes_{x\rightarrow\infty}\bruch{\ln\left(x^2+1\right)-\ln\left(x^2\right)}{\bruch{1}{x}} [/mm] $


Gruß
Loddar


Bezug
                
Bezug
Grenzwert gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:01 Do 28.12.2006
Autor: black2407

hab erstmal die umformungen nachvollziehen muessen.
Soweit hab ich die verstanden,
wenn ich nach deinem letzten schritt nun den grenzwert ziehe kommt wieder 0/0 = 0!! ist das mein ergebnis oder muesste ich weiter L'Hospital anwenden?

Bezug
                        
Bezug
Grenzwert gesucht: nochmal de l'Hospital
Status: (Antwort) fertig Status 
Datum: 15:32 Do 28.12.2006
Autor: Loddar

Hallo black!


Zum einen lässt sich der Ausdruck [mm] $\bruch{0}{0}$ [/mm] (genau wie [mm] $\bruch{\infty}{\infty}$ [/mm] ) im Vorfeld nicht ab- bzw. einzuschätzen zu $0_$ (wie du gerade). Das sind unbestimmte Ausdrücke, die man sich stets genauer ansehen muss.


Aber ja, dann musst Du evtl. nochmals de l'Hospital anwenden. Wie lautet denn Dein neuer Ausdruck? Da gibt es auch Methoden ohne de l'Hospital.


Gruß
Loddar


Bezug
                                
Bezug
Grenzwert gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Do 28.12.2006
Autor: black2407

habe weiter abgeleitet und hab dann nen doppelbruch. diesen wieder zusammengefasst ergibt [mm] 2x^2 [/mm] / [mm] x^3+x [/mm] !

würde wieder beides gegen unendlich laufen...

würde wieder ableiten...

andere möglichkeiten bin ich zu blind für..

Bezug
                                        
Bezug
Grenzwert gesucht: 2 Wege zum Ziel
Status: (Antwort) fertig Status 
Datum: 16:26 Do 28.12.2006
Autor: Loddar

Hallo black!


Du könntest hier also noch 2-mal de l'Hospital anwenden (oder durch $x_$ kürzen und dann nur einmal anwenden).


Alternativ kannst Du auch die höchste Potenz [mm] $x^3$ [/mm] ausklammern und kürzen sowie anschließend die Grenzwertbetrachtung für [mm] $x\rightarrow\infty$ [/mm] .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]