matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwertberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Grenzwerte" - Grenzwertberechnung
Grenzwertberechnung < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertberechnung: Bernoulli Hospital
Status: (Frage) beantwortet Status 
Datum: 21:37 Fr 20.03.2009
Autor: Christopf

hallo

[mm] \limes_{n\rightarrow\bruch{\pi}{2}+0}=\bruch{ln(x+\bruch{\pi}{2})}{tan(x)}= \bruch{-\infty}{\infty}=\limes_{n\rightarrow\bruch{\pi}{2}+0}=\bruch{(cos(x))^{2}}{x-\bruch{\pi}{2} } [/mm]


ich habe ein gleines Verständnisproblem

Mir ist bekannt wenn bei Grennzwertberechnung [mm] \bruch{\infty}{\infty} [/mm] rauskommt muss man jeweils ableiten.

Ich verstehe nicht wie man von [mm] ln(x-\bruch{\pi}{2}) [/mm] zu [mm] cos^{2}(x) [/mm] kommt.

Wenn ich ableite komme ich auf was anderes

Kann mir jemand das erklären

        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Fr 20.03.2009
Autor: schachuzipus

Hallo Christopf,

du musst mal sauberer aufschreiben, wenn du das mal genau liest, steht da Quatsch

> hallo
>  
> [mm] $\limes_{\red{x}\rightarrow\bruch{\pi}{2}+0}=\bruch{ln(x\red{-}\bruch{\pi}{2})}{tan(x)}= \bruch{-\infty}{\infty}=\limes_{\red{x}\rightarrow\bruch{\pi}{2}+0}=\bruch{(cos(x))^{2}}{x-\bruch{\pi}{2} }$ [/mm]
>  
>
> ich habe ein gleines Verständnisproblem
>  
> Mir ist bekannt wenn bei Grennzwertberechnung
> [mm]\bruch{\infty}{\infty}[/mm] rauskommt muss man jeweils
> ableiten.
>  
> Ich verstehe nicht wie man von [mm]ln(x-\bruch{\pi}{2})[/mm] zu
> [mm]cos^{2}(x)[/mm] kommt.

Kommt man auch nicht, wird auch hier überhaupt gar nicht gemacht!

Hier geht es um die Anwendung der Regel von de l'Hôpital.

Es ergibt sich, wie da richtig steht, bei direktem Grenzübergang [mm] $\red{x}\to\frac{\pi}{2}^+$ [/mm] ein unbestimmter Ausdruck [mm] $\frac{-\infty}{\infty}$ [/mm]

Also leitet man gem. der o.e. Regel Zähler und Nenner getrennt ab

1) Zähler: [mm] $\left[\ln\left(x-\frac{\pi}{2}\right)\right]'=\frac{1}{x-\frac{\pi}{2}}$ [/mm]

2) Nenner: [mm] $\left[\tan(x)\right]'=\frac{1}{\cos^2(x)}$ [/mm]

Herleitung über die Definition des Tangens: [mm] $\tan(x)=\frac{\sin(x)}{\cos(x)}$ [/mm] und Quotientenregel

Also [mm] $\lim\limits_{x\to\frac{\pi}{2}^+}\frac{\ln\left(x-\frac{\pi}{2}\right)}{\tan(x)}=\lim\limits_{x\to\frac{\pi}{2}^+}\frac{\frac{1}{x-\frac{\pi}{2}}}{\frac{1}{\cos^2(x)}}=\lim\limits_{x\to\frac{\pi}{2}^+}\frac{\cos^2(x)}{x-\frac{\pi}{2}}$ [/mm]

>  
> Wenn ich ableite komme ich auf was anderes
>  
> Kann mir jemand das erklären


LG

schachuzipus

Bezug
                
Bezug
Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:08 Fr 20.03.2009
Autor: Christopf

Die Ableitung von [mm] ln(x-\bruch{\pi}{2}) [/mm] habe ich [mm] \bruch{2}{2x-\pi} [/mm] raus. Das kann ich doch noch umformen [mm] \bruch{2}{x-\bruch{\pi}{2}}. [/mm] Ist irgendwie trotzdem nicht wie deine Ableitung. habe ich mit ein Matheprogramm kontrolliert.

Bezug
                        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Fr 20.03.2009
Autor: schachuzipus

Hallo nochmal,

> Die Ableitung von [mm]ln(x-\bruch{\pi}{2})[/mm] habe ich
> [mm]\bruch{2}{2x-\pi}[/mm] raus. [ok] Das kann ich doch noch umformen
> [mm]\bruch{2}{x-\bruch{\pi}{2}}.[/mm]

Bitte veräppel mich nicht!

Wo ist die 2 im Nenner hin? Die (deine) Idee, sie auszuklammern, ist richtig.

[mm] $\frac{2}{2x-\pi}=\frac{\blue{2}}{\blue{2}\cdot{}\left(x-\frac{\pi}{2}\right)}=\frac{1}{x-\frac{\pi}{2}}$ [/mm]

> Ist irgendwie trotzdem nicht
> wie deine Ableitung.

Wenn du richtig kürzt, dann schon!

> habe ich mit einem Matheprogramm
> kontrolliert.

*autsch*

LG

schachuzipus


Bezug
                
Bezug
Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:12 Fr 20.03.2009
Autor: Christopf

Wie kommst du von Lösungsschritt 1 zu Lösungsschritt 2:

[mm] 1.)\lim\limits_{x\to\frac{\pi}{2}^+}\frac{\frac{1}{x-\frac{\pi}{2}}}{\frac{1}{\cos^2(x)}}= [/mm]

[mm] 2.)=\lim\limits_{x\to\frac{\pi}{2}^+}\frac{\cos^2(x)}{x-\frac{\pi}{2}} [/mm]




Bezug
                        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Fr 20.03.2009
Autor: schachuzipus

Hallo nochmal,

> Wie kommst du von Lösungsschritt 1 zu Lösungsschritt 2:
>  
> [mm]1.)\lim\limits_{x\to\frac{\pi}{2}^+}\frac{\frac{1}{x-\frac{\pi}{2}}}{\frac{1}{\cos^2(x)}}=[/mm]
>  
> [mm]2.)=\lim\limits_{x\to\frac{\pi}{2}^+}\frac{\cos^2(x)}{x-\frac{\pi}{2}}[/mm]


Puh, du verwirrst mich!

Man dividiert durch einen Bruch, indem man mit dem Kehrwert desselben multipliziert!

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]