matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGrenzwertberechnung L'Hospital
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Grenzwertberechnung L'Hospital
Grenzwertberechnung L'Hospital < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertberechnung L'Hospital: Tipps zur Herangehensweise
Status: (Frage) beantwortet Status 
Datum: 22:45 Mo 20.01.2014
Autor: la_guitarra

Aufgabe
Zeigen Sie:
[mm] \limes_{x \to 0}\bruch{2cosx+e^{x}+e^{-x}-4}{x^4} [/mm] = [mm] \bruch{1}{6} [/mm]


Hallo zusammen,
hier mein Gednakengang:
Ich leite ab und bekomme:

[mm] \bruch{2sinx+e^{x}+e^{-x}}{4x} [/mm]

Das ist aber mal sowas von nicht [mm] \bruch{1}{6} [/mm]

Setzen wir mal x = 0, wegen des Limes, dann:
[mm] \bruch{2sin(0)+e^{0}+e^{-0}}{4*0} [/mm]

also
[mm] \bruch{2sin(0)+1+1}{0} [/mm]

Was läuft hier verkehrt?

Grüße,
Gitarre

        
Bezug
Grenzwertberechnung L'Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Mo 20.01.2014
Autor: DieAcht


> Zeigen Sie:
>  [mm]\limes_{x \to 0}\bruch{2cosx+e^{x}+e^{-x}-4}{x^4}[/mm] =
> [mm]\bruch{1}{6}[/mm]
>  
> Hallo zusammen,
>  hier mein Gednakengang:
>  Ich leite ab und bekomme:
>  
> [mm]\bruch{2sinx+e^{x}+e^{-x}}{4x}[/mm]

[notok]

Es gilt:

      [mm] \cos'(x)=-\sin(x) [/mm]

      [mm] (e^{-x})'=-e^{-x} [/mm]

      [mm] (x^4)'=4x^3 [/mm]

> Das ist aber mal sowas von nicht [mm]\bruch{1}{6}[/mm]
>  
> Setzen wir mal x = 0, wegen des Limes, dann:
>  [mm]\bruch{2sin(0)+e^{0}+e^{-0}}{4*0}[/mm]
>  
> also
>  [mm]\bruch{2sin(0)+1+1}{0}[/mm]
>  
> Was läuft hier verkehrt?
> Grüße,
>  Gitarre


Gruß
DieAcht

Bezug
                
Bezug
Grenzwertberechnung L'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:14 Mo 20.01.2014
Autor: la_guitarra

Hallo und danke,
dann hätten wir also
[mm] \bruch{2-sin(x)+e^{x}-e^{-x}}{4x^3} [/mm]
also
[mm] \bruch{2-sin(0)+e^{0}-e^{0}}{4*0^3} [/mm]

Kann ich hierauf jetzt "einfach" nochmals L'Hospital anwenden?
Dann hätte ich glaube ich irgendwann im Nenner 24 stehen.
Und das ist schonmal ein Vielfaches von 6, das riecht nach richtiger Richtung.  

Bezug
                        
Bezug
Grenzwertberechnung L'Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 23:17 Mo 20.01.2014
Autor: DieAcht


> Hallo und danke,
>  dann hätten wir also
>   [mm]\bruch{2-sin(x)+e^{x}-e^{-x}}{4x^3}[/mm]

Da gehört kein Minus hin!

      [mm] \bruch{2*sin(x)+e^{x}-e^{-x}}{4x^3} [/mm]

>  also
>  [mm]\bruch{2-sin(0)+e^{0}-e^{0}}{4*0^3}[/mm]
> Kann ich hierauf jetzt "einfach" nochmals L'Hospital
> anwenden?

Ja.

>  Dann hätte ich glaube ich irgendwann im Nenner 24
> stehen.

Genau.

>  Und das ist schonmal ein Vielfaches von 6, das riecht nach
> richtiger Richtung.

Japp.


DieAcht

Bezug
        
Bezug
Grenzwertberechnung L'Hospital: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:15 Mo 20.01.2014
Autor: SturmGhost

Also deine Ableitung ist total falsch.

Wie leitest du [mm] x^4 [/mm] ab?

Denk im Zähler an Kettenregel & Produktregel!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]