matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Grenzwerte" - Grenzwerte
Grenzwerte < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:33 Mo 20.04.2009
Autor: Maik226

Aufgabe
bestimmen sie folgende grenzwerte

hallo und guten abend mathe fans, hab ma wieder ein paar fragen an euch...

wir sollen den grenzwert der folgenden funktion bestimmen

lim(x,y)-(2,-3) xy/ [mm] x^2+y^2 [/mm] ich habe hier -6/13 nach einsetzen heraus...

bin mir nur leider nicht sicher ob das so stimmt wäre nett wenn sich das ma jemand anschaut

vielen dank
+
mfg maik

        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Mo 20.04.2009
Autor: schachuzipus

Hallo Maik,

> bestimmen sie folgende grenzwerte
>  hallo und guten abend mathe fans, hab ma wieder ein paar
> fragen an euch...
>  
> wir sollen den grenzwert der folgenden funktion bestimmen
>  
> lim(x,y)-(2,-3) xy/ [mm]x^2+y^2[/mm] ich habe hier -6/13 nach
> einsetzen heraus...

Puh, ich nehme an (und dein Ergebnis deutet darauf hin), dass gemeint ist:

[mm] $\lim\limits_{(x,y)\to (2,-3)}\frac{xy}{x^2+y^2}$ [/mm] ?? $ \ \ [mm] \longleftarrow$ [/mm] klick!

Dann nämlich stimmt dein Ergebnis!

>  
> bin mir nur leider nicht sicher ob das so stimmt wäre nett
> wenn sich das ma jemand anschaut
>  
> vielen dank
>  +
>  mfg maik

LG

schachuzipus


Bezug
                
Bezug
Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:51 Mo 20.04.2009
Autor: Maik226

ja so meinte ich das eigendlich... :-) muss mich mit dem formel editor wieder vertraut machen

vielen dank


Bezug
                        
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:07 Mo 20.04.2009
Autor: Maik226

ich habe nun noch ein paar aufgaben bei denen immer [mm] \bruch{0}{40} [/mm] heraus ist dann der grenzwert 0???

Bezug
                                
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 23:10 Mo 20.04.2009
Autor: schachuzipus

Hallo nochmal,

> ich habe nun noch ein paar aufgaben bei denen immer
> [mm]\bruch{0}{40}[/mm] heraus ist dann der grenzwert 0???

Jo, [mm] $\frac{0}{40}=0$, [/mm] oder? ;-)

LG

schachuzipus


Bezug
                                        
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:15 Mo 20.04.2009
Autor: Maik226

upps ich habe mich vertippt ich meinte 0/0 = 0??

Bezug
                                                
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Mo 20.04.2009
Autor: schachuzipus

Hallo nochmal,

> upps ich habe mich vertippt ich meinte 0/0 = 0??

Nein, [mm] $\frac{0}{0}$ [/mm] ist ein unbestimmter Ausdruck, das kann alles mögliche sein.

Vllt. postest du mal die Aufgabe, dann schauen wir weiter ...

LG

schachuzipus


Bezug
                                                        
Bezug
Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:35 Mo 20.04.2009
Autor: reverend

Hallo maik,

mach für eine neue Aufgabe aber besser eine neue Anfrage auf.
Jedenfalls, wenn die Regel von L'Hospital noch nicht weitergeholfen hat.

Grüße
reverend

Bezug
                                                                
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:42 Mo 20.04.2009
Autor: Maik226

ok also ich habe einmal

[mm] lim(x,y)(1,3)=\bruch{6x-2y}{9x^2-y^2} [/mm]  = 0/0

und
[mm] lim(x,y)(1,1)=\bruch{x^2-1}{x-1}+\bruch{y-1}{y^2-1} [/mm] =0/0

für mich sind hier die grenwerte 0

kann jemand ma schauen und mir einen tipp geben voielen dank

mfg maik

Bezug
                                                                        
Bezug
Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:59 Mo 20.04.2009
Autor: reverend

Hallo Maik,

wird das eine Abstimmung?

Für mich sind beide Grenzwerte [mm] +\infty, [/mm] also nicht existent.

Kannst Du Deine Lösung begründen?

Grüße
reverend

Bezug
                                                                        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 00:08 Di 21.04.2009
Autor: schachuzipus

Hallo Maik,

> ok also ich habe einmal
>  
> [mm]lim(x,y)(1,3)=\bruch{6x-2y}{9x^2-y^2}[/mm]  = 0/0
>  
> und
> [mm]lim(x,y)(1,1)=\bruch{x^2-1}{x-1}+\bruch{y-1}{y^2-1}[/mm] =0/0
>  
> für mich sind hier die grenwerte 0
>  
> kann jemand ma schauen und mir einen tipp geben voielen
> dank

Ein heißer Tipp ist: Ausklammern, an die 3. binomische Formel denken und fleißig kürzen (wenn's geht).

Beide Grenzwerte sind weder 0 noch [mm] \infty [/mm]


>  
> mfg maik

LG

schachuzipus

Bezug
                                                                                
Bezug
Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:11 Di 21.04.2009
Autor: reverend

Verräter.
;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]