matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeGrößtes Volumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Extremwertprobleme" - Größtes Volumen
Größtes Volumen < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Größtes Volumen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:43 Mi 19.09.2007
Autor: Aristoteles

Aufgabe
Aus 4 gleichlangen Stangen zu je 3m soll ein Zelt in Form einer geraden quadratischen Pyramide aufgestellt werden. Bei welcher Höhe hat sie grötmögliches Volumen?

Hi!!!!

Ich bin gerade am üben für einen Mahe Test am Freitag!

Habe bereits viel gemacht, doch dieses Beispiel liefert mir eigentlioch nicht wirklich einen Anhaltspunkt.

Vor allem weiß ich nicht, wo ich beginnen soll!

Bitte heelft mir!!!

        
Bezug
Größtes Volumen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Mi 19.09.2007
Autor: ONeill

Hallo!
Bei Extremalaufgabe geht man so vor:
1. Hauptbedingung
2. Nebenbedingung        (irgendwann mal Randwerte festsetzen)
3. Zielfunktion
4. Zielfunktion ableiten
5. Extrempunkte suchen und überprüfen
6. Randwerte überprüfen
Das heißt hier:
Das Volumen soll maximal werden. Die Hauptbedingung setzt sich aus der Formel des Volumens für eine Pyramide zusammen.
In der Nebenbedingung solltest du fehlende Variablen mit bekannten umschreiben können, um dann in der Zielfunktion nur noch eine Unbekannte zu haben.
Versuchs mal ;-)
Gruß ONeill

Bezug
        
Bezug
Größtes Volumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Mi 19.09.2007
Autor: Aristoteles

also ich habe mir jetzt mal die volumsformel herausgechrieben und geschaut welche variablen ich ersetzen kann - aber ich finde nicht wirklich eine... :(

Bezug
                
Bezug
Größtes Volumen: Tipp
Status: (Antwort) fertig Status 
Datum: 20:06 Mi 19.09.2007
Autor: Loddar

Hallo Aristoteles!


Schneide Deine Pyramide doch mal diagonal durch (also entlang der Diagonalen der Grundfläche und durch die Spitze).

Damit entsteht doch ein gleichschenkliges Dreieck mit den bekannten Schenkellängen $3 \ [mm] \text{m}$ [/mm] . Unbekannt sind uns hier dann nur noch zwei Werte: die Höhe $h_$ sowue die Diagonalenlänge $d_$ .

Aus der Diagonalenlänge $d_$ kann man die Grundeitenlänge $a_$ berechnen mit (wegen quadratischer Grundfläche):

$$d \ = \ [mm] a*\wurzel{2}$$ [/mm]

Druch Anwendung des Satzes von Herrn Pythagoras in unserem gleichschenkligen Dreieck gilt:
[mm] $$h^2+\left(\bruch{d}{2}\right)^2 [/mm] \ = \ [mm] 3^2$$ [/mm]
[mm] $$h^2+\left(\bruch{a*\wurzel{2}}{2}\right)^2 [/mm] \ = \ [mm] 3^2$$ [/mm]
[mm] $$h^2+\bruch{a^2}{2} [/mm] \ = \ 9$$

Hier nun nach [mm] $a^2 [/mm] \ = \ ...$ umstellen und in die Volumensformel einsetzen:
[mm] $$V_{\text{Pyramide}} [/mm] \ = \ [mm] \bruch{1}{3}*G*h [/mm] \ = \ [mm] \bruch{1}{3}*a^2*h$$ [/mm]

Gruß
Loddar


Bezug
                        
Bezug
Größtes Volumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:12 Mi 19.09.2007
Autor: Aristoteles

hi

hey scheint eigentlich sehr logisch ;)
...
nur ein kleines problem ...

laut lösung soll [mm] h=\wurzel{3} [/mm] sein

Bezug
                                
Bezug
Größtes Volumen: stimmt doch ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:18 Mi 19.09.2007
Autor: Loddar

Hallo Aristoteles!


Und wo ist da das Problem? Diesen Wert erhalte ich mit meinem Ansatz auch.

Gruß
Loddar


Bezug
                                        
Bezug
Größtes Volumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mi 19.09.2007
Autor: Aristoteles

was machst du das du auf [mm] \wurzel{3} [/mm] kommst?

Bezug
                        
Bezug
Größtes Volumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:32 Mi 19.09.2007
Autor: Aristoteles

ich kann daraus keine gleichung machen weil links nix is:

V = 1/3 * [mm] 2h^2 [/mm] - 9*h

Bezug
        
Bezug
Größtes Volumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 Mi 19.09.2007
Autor: Aristoteles

Aufgabe
wie kann ich aus der "halben" gleichung nun h berechnen?

bitte erklärt mir das...
habs schon probiert und alles eingesetzt.

Bezug
                
Bezug
Größtes Volumen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 Mi 19.09.2007
Autor: moody

Loddar hat doch gegeben:

Vpyramide = 1/3 * [mm] a^2 [/mm] * h

Und auch [mm] h^2 [/mm] + [mm] \bruch{a^2}{2} [/mm] = 9

Die letzte Gleichung, hat er auch gesagt nach [mm] a^2 [/mm] umstellen:

2*(9 - [mm] h^2) [/mm] = [mm] a^2 [/mm]

Eingesetzt ergibt das dann:

Vpyramide = 1/3 * (2* (9 - [mm] h^2)) [/mm] * h = 1/3 * (18 - [mm] 2h^2) [/mm] * h = (6 - [mm] 2/3h^2) [/mm] * h = 6h - [mm] \bruch{2}{3} *h^3 [/mm]

Das musst du dann ableiten:

6 - 3*2/3 [mm] h^2 [/mm] = V'

Die muss ja = 0 um die Extrema zu finden also:

0 = 6 - [mm] 2h^2 [/mm] | + [mm] 2h^2 [/mm]

[mm] 2h^2 [/mm] = 6 | :2

[mm] h^2 [/mm] = 3 | [mm] \wurzel{} [/mm]

h = [mm] \wurzel{3} [/mm]

Hoffe der Weg ist verständlich.



Bezug
                        
Bezug
Größtes Volumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:23 Mi 19.09.2007
Autor: Aristoteles

danke dir sehr ;) ..ich bin ein trottel ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]