matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreGrundgesetze der Mengenalgebra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mengenlehre" - Grundgesetze der Mengenalgebra
Grundgesetze der Mengenalgebra < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grundgesetze der Mengenalgebra: Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 13:15 Mi 20.11.2013
Autor: RebeccaNie

Aufgabe
Es seien A, B und Teilmengen einer gemeinsamen Grundmenge M. Zeigen/ Beweisen Sie die Richtigkeit folgender Behauptungen unter Verwendung der Grundgesetze der Mengenalgebra.

Hallo,
komme leider bei folgender Aufgabe nicht weiter. Vllt. hat ja jemand einen Tipp, der hilfreich ist.

_______        ______
  -   -              -    -
((A u B) u C) n (A u B) = A n B n C

u = oder (konnte es leider nicht anders schreiben)
n = und

Habe bereits die deMorgansche Regel und das Distributivgesetz angewendet und komme jetzt nicht mehr weiter.
                       -
= (A u C) n (B u C) n (A n B)

Wenn man nach den Grundgesetzen der Mengenalgebra geht, gibt es doch jetzt kein Gesetz mehr das mich in irgendeinerweise noch weiter bringt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Grundgesetze der Mengenalgebra: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Mi 20.11.2013
Autor: schachuzipus

Hallo RebeccaNie und erstmal herzlich [willkommenmr],


> Es seien A, B und Teilmengen einer gemeinsamen Grundmenge
> M. Zeigen/ Beweisen Sie die Richtigkeit folgender
> Behauptungen unter Verwendung der Grundgesetze der
> Mengenalgebra.
> Hallo,
> komme leider bei folgender Aufgabe nicht weiter. Vllt. hat
> ja jemand einen Tipp, der hilfreich ist.

>

> _______ ______
> - - - -
> ((A u B) u C) n (A u B) = A n B n C

>

> u = oder (konnte es leider nicht anders schreiben)
> n = und

Die Vereinigung [mm]\cup[/mm] schreibt sich \cup

Der Schnitt [mm]\cap[/mm] schreibt sich \cap

Die Komplementüberstriche, etwa [mm]\overline{A}[/mm] kannst du mit dem Befehl "overline" machen: \overline{A} ...

Ich tippe die Aufgabe noch mal ein, um sicher zu gehen:

zz.: [mm]((\overline{\overline{A}\cup\overline{B}})\cup C) \ \cap \ (\overline{A\cup\overline{B}}) \ = \ \overline{A}\cap B\cap C[/mm]

So richtig? Klicke mal auf die Formel ...


>

> Habe bereits die deMorgansche Regel und das
> Distributivgesetz angewendet

Gute Idee!

> und komme jetzt nicht mehr
> weiter.
> -
> = (A u C) n (B u C) n (A n B)

lt. Quelltext: [mm](A\cup C)\cap (B\cup C)\cap (\overline{A}\cap B)[/mm]

Das ist richtig!


Sortiere um (warum geht das?) zu:

[mm]=\left[(A\cup C)\cap \overline A\right] \ \cap \ \left[(B\cup C)\cap B\right][/mm]

Bei der 1.Klammer hilft das Distributivgesetz, bei der zweiten das Absorptionsgesetz ...


>

> Wenn man nach den Grundgesetzen der Mengenalgebra geht,
> gibt es doch jetzt kein Gesetz mehr das mich in
> irgendeinerweise noch weiter bringt.

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]