matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGruppenhomomorphismen 2
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Gruppenhomomorphismen 2
Gruppenhomomorphismen 2 < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenhomomorphismen 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Di 09.04.2013
Autor: Labrinth

Aufgabe
Es seien [mm] $\varphi\colon G\longrightarrow [/mm] G'$ ein Homomorphismus und $N'$ eine normale Untergruppe von $G'$. Dann ist [mm] $N:=\varphi^{-1}(N')$ [/mm] eine normale Untergruppe von $G$.



Guten Tag!

Ich habe so gut wie keine Hilfsmittel. Dass $N$ eine Untergruppe ist, habe ich bereits bewiesen. Nach meiner Definition ist $N$ normal, falls für alle [mm] $g\in [/mm] G$ gilt, dass $gN=Ng$. Ist meine Lösung richtig:

Sei [mm] $gn\in [/mm] gN$, dann ist [mm] $\varphi(gn)=\varphi(g)\varphi(n)\in\varphi(g)N'=N'\varphi(g)$. [/mm] Dann gibt es [mm] $n'\in [/mm] N'$ mit [mm] $\varphi(gn)=n'\varphi(g)$ [/mm] und es ist [mm] $gn\in\varphi^{-1}(\varphi(gn))=\varphi^{-1}(n'\varphi(g))\subset\varphi^{-1}(N'\varphi(g))=\varphi^{-1}(\varphi(N)\varphi(g))=\varphi^{-1}(\varphi(Ng))=Ng$. [/mm]
Dann habe ich [mm] $gN\subset [/mm] Ng$, umgekehrt müsste es ja genau so gehen.

Ist das richtig? Geht es kürzer? Danke schonmal.

Beste Grüße,
Labrinth

        
Bezug
Gruppenhomomorphismen 2: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Di 09.04.2013
Autor: tobit09

Hallo Labrinth,


> Ich habe so gut wie keine Hilfsmittel. Dass [mm]N[/mm] eine
> Untergruppe ist, habe ich bereits bewiesen. Nach meiner
> Definition ist [mm]N[/mm] normal, falls für alle [mm]g\in G[/mm] gilt, dass
> [mm]gN=Ng[/mm].

Weißt du schon, dass eine Untergruppe [mm] $N\subseteq [/mm] G$ genau dann ein Normalteiler von $G$ ist, wenn [mm] $gNg^{-1}\subseteq [/mm] N$ für alle [mm] $g\in [/mm] G$ gilt? Damit ginge es schneller...


> Ist meine Lösung richtig:
>  
> Sei [mm]gn\in gN[/mm], dann ist
> [mm]\varphi(gn)=\varphi(g)\varphi(n)\in\varphi(g)N'=N'\varphi(g)[/mm].
> Dann gibt es [mm]n'\in N'[/mm] mit [mm]\varphi(gn)=n'\varphi(g)[/mm]

[ok]

> und es ist
> [mm]gn\in\varphi^{-1}(\varphi(gn))[/mm]

[mm] $\varphi^{-1}(\{\varphi(gn)\})$ [/mm] meinst du.

> [mm]=\varphi^{-1}(n'\varphi(g))[/mm]

[mm] $\varphi^{-1}(\{n'\varphi(g)\})$ [/mm]

> [mm]\subset\varphi^{-1}(N'\varphi(g))[/mm]

Ja.

> [mm] $=\varphi^{-1}(\varphi(N)\varphi(g))$ [/mm]

Warum sollte das gelten?

> [mm] $=\varphi^{-1}(\varphi(Ng))$ [/mm]

Ja.

> [mm]=Ng[/mm].

Warum sollte das gelten?


Du willst [mm] $gn\in [/mm] Ng$ zeigen, suchst also ein [mm] $m\in [/mm] N$ mit $gn=mg$. Wie kann $m$ also nur aussehen? Leistet dieses $m$ das Gewünschte?


Viele Grüße
Tobias

Bezug
                
Bezug
Gruppenhomomorphismen 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:57 Di 09.04.2013
Autor: Labrinth


> Hallo Labrinth,
>  
>
> > Ich habe so gut wie keine Hilfsmittel. Dass [mm]N[/mm] eine
> > Untergruppe ist, habe ich bereits bewiesen. Nach meiner
> > Definition ist [mm]N[/mm] normal, falls für alle [mm]g\in G[/mm] gilt, dass
> > [mm]gN=Ng[/mm].
>  Weißt du schon, dass eine Untergruppe [mm]N\subseteq G[/mm] genau
> dann ein Normalteiler von [mm]G[/mm] ist, wenn [mm]gNg^{-1}\subseteq N[/mm]
> für alle [mm]g\in G[/mm] gilt? Damit ginge es schneller...
>  
>
> > Ist meine Lösung richtig:
>  >  
> > Sei [mm]gn\in gN[/mm], dann ist
> >
> [mm]\varphi(gn)=\varphi(g)\varphi(n)\in\varphi(g)N'=N'\varphi(g)[/mm].
> > Dann gibt es [mm]n'\in N'[/mm] mit [mm]\varphi(gn)=n'\varphi(g)[/mm]
>  [ok]
>  
> > und es ist
> > [mm]gn\in\varphi^{-1}(\varphi(gn))[/mm]
>  [mm]\varphi^{-1}(\{\varphi(gn)\})[/mm] meinst du.
>  
> > [mm]=\varphi^{-1}(n'\varphi(g))[/mm]
>  [mm]\varphi^{-1}(\{n'\varphi(g)\})[/mm]
>  
> > [mm]\subset\varphi^{-1}(N'\varphi(g))[/mm]
>  Ja.
>  
> > [mm]=\varphi^{-1}(\varphi(N)\varphi(g))[/mm]
>  Warum sollte das gelten?
>  
> > [mm]=\varphi^{-1}(\varphi(Ng))[/mm]
>  Ja.
>  
> > [mm]=Ng[/mm].
>  Warum sollte das gelten?
>  
>
> Du willst [mm]gn\in Ng[/mm] zeigen, suchst also ein [mm]m\in N[/mm] mit
> [mm]gn=mg[/mm]. Wie kann [mm]m[/mm] also nur aussehen? Leistet dieses [mm]m[/mm] das
> Gewünschte?

Danke,

[mm] m=gng^{-1}. [/mm]

[mm] $m\in N\iff\varphi(g)\varphi(n)\varphi(g^{-1})\in [/mm] N'$. Da [mm] $\varphi(n)\in [/mm] N'$, $N'$ normal gibt es $n'$, sodass [mm] $\varphi(g)\varphi(n)=n'\varphi(g)$. [/mm]

Also [mm] $m\in N\iff n'\varphi(g)\varphi(g^{-1})=n'\in [/mm] N'$. Fertig.

So besser?

Beste Grüße,
Labrinth


> Viele Grüße
>  Tobias


Bezug
                        
Bezug
Gruppenhomomorphismen 2: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 Di 09.04.2013
Autor: tobit09


> > Du willst [mm]gn\in Ng[/mm] zeigen, suchst also ein [mm]m\in N[/mm] mit
> > [mm]gn=mg[/mm]. Wie kann [mm]m[/mm] also nur aussehen? Leistet dieses [mm]m[/mm] das
> > Gewünschte?
>  
> Danke,
>  
> [mm]m=gng^{-1}.[/mm]
>  
> [mm]m\in N\iff\varphi(g)\varphi(n)\varphi(g^{-1})\in N'[/mm]. Da
> [mm]\varphi(n)\in N'[/mm], [mm]N'[/mm] normal gibt es [mm]n'[/mm], sodass
> [mm]\varphi(g)\varphi(n)=n'\varphi(g)[/mm].
>  
> Also [mm]m\in N\iff n'\varphi(g)\varphi(g^{-1})=n'\in N'[/mm].
> Fertig.
>  
> So besser?

Ja. [ok] Jetzt noch alles ordentlich aufschreiben und du bist fertig.

Bezug
                                
Bezug
Gruppenhomomorphismen 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:15 Di 09.04.2013
Autor: Labrinth

Danke. Hieran sieht man auch $N$ normal [mm] $\iff N\supset gNg^{-1}\ \forall g\in [/mm] G$, wie du am Anfang behauptet hast.

Beste Grüße,
Labrinth

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]