matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenProzesse und MatrizenHerleitung Invertierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Prozesse und Matrizen" - Herleitung Invertierbarkeit
Herleitung Invertierbarkeit < Prozesse+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung Invertierbarkeit: Hilfe Herleitung
Status: (Frage) beantwortet Status 
Datum: 19:45 Mi 20.11.2013
Autor: jktz8432

Hallo,

kann mir jemand bei der Herleitung der Invertierbarkeit einer 2x2 Matrix helfen?

Gegen sind ja A=  [mm] \pmat{ a & b \\ c & d } [/mm] u. B= [mm] \pmat{ d& -c \\ -b & a } [/mm]

Warum kommt man am Ende des Beweises (wie er auch auf folgender Seite beschrieben ist: http://www.chemgapedia.de/vsengine/vlu/vsc/de/ma/1/mc/ma_11/ma_11_02/ma_11_02_05.vlu/Page/vsc/de/ma/1/mc/ma_11/ma_11_02/ma_11_02_12.vscml.html )

Auf   A^-1 =  1 /  ad−bc  *  [mm] \pmat{ d & -c \\ -b & a } [/mm]

Der Term  1 /  ad−bc ist soweit klar, aber warum wird der Term  mit der Matrix B multipliziert und nicht mit A*B / A?

Danke

        
Bezug
Herleitung Invertierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Mi 20.11.2013
Autor: Marcel

Hallo,

> Hallo,
>  
> kann mir jemand bei der Herleitung der Invertierbarkeit
> einer 2x2 Matrix helfen?
>  
> Gegen sind ja A=  [mm]\pmat{ a & b \\ c & d }[/mm] u. B= [mm]\pmat{ d& -c \\ -b & a }[/mm]
>  
> Warum kommt man am Ende des Beweises (wie er auch auf
> folgender Seite beschrieben ist:
> http://www.chemgapedia.de/vsengine/vlu/vsc/de/ma/1/mc/ma_11/ma_11_02/ma_11_02_05.vlu/Page/vsc/de/ma/1/mc/ma_11/ma_11_02/ma_11_02_12.vscml.html
> )
>  
> Auf   A^-1 =  1 /  ad−bc  *  [mm]\pmat{ d & -c \\ -b & a }[/mm]

Du musst schon Klammern um [mm] $ad-bc\,$ [/mm] setzen, sonst ist das Quatsch!
  

> Der Term  1 /  ad−bc ist soweit klar, aber warum wird der

s.o.: [mm] $1/(ad-bc)\,.$ [/mm] Denn $1/ad-bc$ würde man als

    [mm] $\frac{1}{a}*d-bc$ [/mm]

lesen (auch nicht(!) als [mm] $\frac{1}{ad}-bc$!) [/mm]

> Term  mit der Matrix B multipliziert und nicht mit A*B / A?

Wie willst Du denn durch eine Matrix dividieren??? (I.A. sind Matrizen nicht
invertierbar - und obige Matrix [mm] $A\,$ [/mm] ist auch "nur" im Falle [mm] $ad-bc\not=0$ [/mm] invertierbar;
aber was soll sowas wie [mm] $1/A\,$ [/mm] "bringen", wenn doch [mm] $1/A\,$ [/mm] nur eine Symbolik
für [mm] $A^{-1}$ [/mm] ist und Du gerade [mm] $A^{-1}$ [/mm] gar nicht kennst, sondern ausrechnen
oder eine Formel dafür herleiten/begründen willst? Übrigens würde man die
[mm] $1\,$ [/mm] in [mm] $1/A\,$ [/mm] dann auch besser als [mm] $E_{2}:=\pmat{1 & 0 \\ 0 & 1}$ [/mm] interpretieren,
denn [mm] $E_2$ [/mm] ist in der Menge aller $2 [mm] \times [/mm] 2$-Matrizen über [mm] $\IR$ [/mm] hier das
multiplikativ neutrale Element!)

Es soll doch

    [mm] $A*A^{-1}=\pmat{1 & 0 \\ 0 & 1}$ [/mm]

sein. Ferner gilt

    [mm] $r*\pmat{s & t \\ u & v}=\pmat{r*s & r*t\\ r*u & r*v}\,.$ [/mm]

Dort wurde

    [mm] $A*B=\pmat{ad-bc & 0 \\ 0 & ad-bc}=\pmat{(ad-bc)*1, & (ad-bc)*0\\(ad-bc)*0, & (ad-bc)*1}$ [/mm]

nachgerechnet. Also haben wir

    [mm] $A*B=(ad-bc)*\pmat{1 & 0\\0 & 1}\,.$ [/mm]

Im Falle $ad-bc [mm] \not=0$ [/mm] ersetze nun mal [mm] $B\,$ [/mm] durch

    [mm] $\tilde{B}:=\frac{1}{ad-bc}*B$ [/mm]

und denke nach, was das nun bedeutet! (Was ist dann [mm] $A*\tilde{B}=\frac{1}{ad-bc}*(A*B)$?) [/mm]

Gruß,
  Marcel

Bezug
                
Bezug
Herleitung Invertierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:18 Mi 20.11.2013
Autor: jktz8432

$ [mm] A\cdot{}B=(ad-bc)\cdot{}\pmat{1 & 0\\0 & 1}\,. [/mm] $


Würde dann ja heißen, dass A^-1 = [mm] \frac{1}{ad-bc}\cdot{}B [/mm] $ sein muss, damit A * A^-1 = E  erfüllt ist ?

Bezug
                        
Bezug
Herleitung Invertierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 Mi 20.11.2013
Autor: Marcel

Hallo,

>  [mm]A\cdot{}B=(ad-bc)\cdot{}\pmat{1 & 0\\0 & 1}\,.[/mm]
>
>
> Würde dann ja heißen, dass A^-1 = [mm]\frac{1}{ad-bc}\cdot{}B[/mm]

genau: Mein [mm] $\tilde{B}$ [/mm] ist nichts anderes als [mm] $A^{-1}$! [/mm]

> sein muss, damit A * A^-1 = E  erfüllt ist ?

So sieht's aus. Beachte aber, dass dabei zwingend

    $ad-bc [mm] \not=0$ [/mm]

gelten muss. (Sonst kannst Du [mm] $1/(ad-bc)\,$ [/mm] schon gar nicht hinschreiben...!)

Also Fazit:
   []http://de.wikipedia.org/wiki/Regul%C3%A4re_Matrix#Formel_f.C3.BCr_2x2-Matrizen

bzw. (wie gesagt: für $ad-bc [mm] \not=0$): [/mm]
Für [mm] $A=\pmat{a, & b \\ c, & d}$ [/mm] gilt

    $ [mm] A^{-1}=\displaystyle\frac{1}{ad-bc}*\pmat{d, & -b \\ -c, & a}=\pmat{\displaystyle\frac{d}{ad-bc}, & & \displaystyle\frac{-b}{ad-bc} \\ \\ \displaystyle\frac{-c}{ad-bc}, & & \displaystyle\frac{a}{ad-bc}}\,.$ [/mm]

Gruß,
  Marcel

Bezug
                                
Bezug
Herleitung Invertierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:46 Mi 20.11.2013
Autor: jktz8432

Danke

Bezug
        
Bezug
Herleitung Invertierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Mi 20.11.2013
Autor: Marcel

Hallo,

mir ist übrigens gerade aufgefallen:

> Hallo,
>  
> kann mir jemand bei der Herleitung der Invertierbarkeit
> einer 2x2 Matrix helfen?
>  
> Gegen sind ja A=  [mm]\pmat{ a & b \\ c & d }[/mm] u. B= [mm]\pmat{ d& -c \\ -b & a }[/mm]

bei Deiner Matrix [mm] $B\,$ [/mm] ist ein "Abschreibe"-Fehler:

    [mm] $B=\pmat{ d& \red{\,-\;b} \\ \red{\;-\,c} & a }$ [/mm]

So sieht die (auch im Link) korrekt aus! [mm] ($a\,$ [/mm] und [mm] $d\,$ [/mm] werden vertauscht,
aber bei [mm] $b\,$ [/mm] und [mm] $c\,$ [/mm] wird nur das Vorzeichen geändert, getauscht werden
die nicht gegeneinander!)

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]