matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Herleitung einer Formel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Herleitung einer Formel
Herleitung einer Formel < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung einer Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Di 30.09.2014
Autor: Fee

Aufgabe
Es gibt eine Formel, mit der man aus der Länge der Sehne s und der Höhe h des Kreisabschnittes den Radius r berechnen kann. Kannst du die Formel mit dem Satz des Pythagoras selbst herleiten ?

r = (h/2) + [mm] (s^2 [/mm] / 8h)

Hallo Ihr Lieben,

ich habe als erstes eine Zeichnung gemacht, in der r die Seitenlänge des Dreiecks sind und s ( Sehne)  die Hypotenuse. Die Höhe des Dreiecks ist r-h.

Aus dem Satz des Pythagoras abgeleitet müsste das dann heißen :

[mm] r^2 [/mm] = [mm] (s/2)^2 [/mm] + [mm] (r-h)^2 [/mm]

Dann nimmt man die Wurzel. Aber da kommt trotzdem nicht die Formel von oben heraus. Könnt ihr mir weiter helfen ?

Dankeschön !

Fee

        
Bezug
Herleitung einer Formel: Hinweis
Status: (Antwort) fertig Status 
Datum: 17:24 Di 30.09.2014
Autor: ShinobiWorldStake

Deine hergeleitete Gleichung mit dem Satz des Pythagoras ist richtig. Und natürlich kannst du die Wurzel ziehen, um den Radius zu bestimmen. Aber es geht auch anders, "einfacher".

Du quadriest erst einmal alles:

[mm] (\bruch{s}{2})^{2} [/mm] + [mm] (r-h)^{2} [/mm] = [mm] r^{2} [/mm]


[mm] \bruch{s^{2} }{4} [/mm] + [mm] r^{2} [/mm] - 2hr + [mm] h^{2} [/mm] = [mm] r^{2} [/mm]

Nun kannst du [mm] r^{2} [/mm] auf beiden Seiten der Gleichung subtrahieren

[mm] \bruch{s^{2} }{4} [/mm] - 2hr + [mm] h^{2} [/mm] = 0

Wenn du nun nach r umstellst, solltest du auf die Formel kommen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]