matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesHinreichende Bed. Wendestelle
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Hinreichende Bed. Wendestelle
Hinreichende Bed. Wendestelle < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hinreichende Bed. Wendestelle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:46 Di 19.02.2008
Autor: DarkCell

Also bei uns läuft eine Funktionsuntersuchung auf Extrem- und Wendestellen nach folgendem Muster ab:
Für Extremstellen:
Notwendige Bedingung f'(x)=0 ; x-Wert bestimmen für den dies zutrifft.
Hinreichende Bedingung f''(x) [mm] \not= [/mm] 0 (für y>0 --> Minimum für y<0 --> Maximum

Wendestellen
Notwendige Bedingung f''(x)=0 ; wieder x-Wert bestimmen
Hinreichende Bedingung f'''(x) [mm] \not= [/mm] 0

So jetzt zu meiner Frage: Wofür ist überhaupt noch die Hinreichende Bedingung für die Wendestellen notwendig. Oder auch was gibt es noch für einen Punkt für den gilt f'(x) [mm] \not= [/mm] = aber f''(x)=0
Der einzige besondere Punkt, der mir noch einfällt außer Extrempunkt und Wendepunkt ist der Sattelpunkt, aber den hätten wir ja schon bei der Bestimmung der Extremstellen herausgefunden. Warum also eine hinreichende Bedingung für dei Wendestellen?
Danke im Voraus

        
Bezug
Hinreichende Bed. Wendestelle: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:54 Di 19.02.2008
Autor: steppenhahn

Betrachte mal die Funktion [mm] x^{4} [/mm] auf Wendestellen! Du wirst sehen, wegen

f''(x) = [mm] 12x^{2}, [/mm] dass eine mögliche Wendestelle bei x = 0 vorliegt, aber wenn du das x = 0 in f'''(x) = 24x einsetzt, erhältst du wieder 0 - es ist nämlich keine Wendestelle.

Wie genau man diese Punkte jetzt nennt, die bei [mm] x^{4} [/mm] an Stelle 0 auftreten, weiß ich aber auch nicht. :-)

Bezug
        
Bezug
Hinreichende Bed. Wendestelle: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Di 19.02.2008
Autor: rainerS

Hallo!

Ich gebe dir ein Beispiel:

[mm] $y=x^4+x$ [/mm]

[Dateianhang nicht öffentlich]

Gibt es einen Wendepunkt?

Viele Grüße
   Rainer

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]