matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperHomomorphismen und Normalteile
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Homomorphismen und Normalteile
Homomorphismen und Normalteile < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homomorphismen und Normalteile: Beweis zu einem Lemma
Status: (Frage) beantwortet Status 
Datum: 19:01 Sa 29.06.2013
Autor: GraceLass

Aufgabe
Lemma:
Sei [mm] \phi [/mm] : G [mm] \to [/mm] G' ein Gruppenhomomorphismus.
(1) Ist N' normal in G', dann ist auch [mm] \phi^{-1}(N') [/mm] normal in G. Insbesondere ist [mm] ker(\phi) [/mm] ein Normalteiler von G.
(2) Ist [mm] \phi [/mm] surjektiv und N normal in G, dann gilt auch [mm] \phi(N) [/mm] ist normal in G'.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Wir haben das bewiesen in der Vorlesung und ich verstehe den Beweis noch nicht so wirklich. Eigentlich hakt es nur an einer einzigen Stelle, aber die ist ziemlich wesentlich.
Wir haben gesagt, dass [mm] \phi^{-1}(N') [/mm] eine Untergruppe von G ist (anderes Lemma hatte das schon gezeigt). Dann sagen wir, dass g [mm] \in [/mm] G und [mm] n\in\phi^{-1}(N') [/mm] ist. Bis dahin alles klar. Jetzt kommt eine komische Rechnung aus der dann die Behauptung folgern soll:
[mm] \phi(gng^{-1}) [/mm] = [mm] \phi(g)\phi(n)\phi(g)^1 [/mm] (bis hierhin klar, da Homomorphismus)
Unser Prof. sagt aber jetzt, dass
[mm] \phi(g)\phi(n)\phi(g)^{-1}\in \phi(g)N'\phi(g)^{-1} [/mm] = N'
Wie kann man folgern, dass das gleich N' sein soll?
Wenn das nämlich geht, dann verstehe ich den Rest, weil dann sagt er einfach nur noch, dass
[mm] g\phi^{-1}(N')g^{-1} \subset \phi^{-1}(N') [/mm]
ist, was dann ja aus dem folgt, was ich nicht verstehe.

Wäre froh, über jeden Kommentar. :)

        
Bezug
Homomorphismen und Normalteile: Antwort
Status: (Antwort) fertig Status 
Datum: 08:35 So 30.06.2013
Autor: fred97


> Lemma:
>  Sei [mm]\phi[/mm] : G [mm]\to[/mm] G' ein Gruppenhomomorphismus.
>  (1) Ist N' normal in G', dann ist auch [mm]\phi^{-1}(N')[/mm]
> normal in G. Insbesondere ist [mm]ker(\phi)[/mm] ein Normalteiler
> von G.
>  (2) Ist [mm]\phi[/mm] surjektiv und N normal in G, dann gilt auch
> [mm]\phi(N)[/mm] ist normal in G'.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Wir haben das bewiesen in der Vorlesung und ich verstehe
> den Beweis noch nicht so wirklich. Eigentlich hakt es nur
> an einer einzigen Stelle, aber die ist ziemlich
> wesentlich.
>  Wir haben gesagt, dass [mm]\phi^{-1}(N')[/mm] eine Untergruppe von
> G ist (anderes Lemma hatte das schon gezeigt). Dann sagen
> wir, dass g [mm]\in[/mm] G und [mm]n\in\phi^{-1}(N')[/mm] ist. Bis dahin
> alles klar. Jetzt kommt eine komische Rechnung aus der dann
> die Behauptung folgern soll:
>  [mm]\phi(gng^{-1})[/mm] = [mm]\phi(g)\phi(n)\phi(g)^1[/mm] (bis hierhin
> klar, da Homomorphismus)
>  Unser Prof. sagt aber jetzt, dass
>  [mm]\phi(g)\phi(n)\phi(g)^{-1}\in \phi(g)N'\phi(g)^{-1}[/mm] = N'
>  Wie kann man folgern, dass das gleich N' sein soll?



N' ist doch normal in G'  !!!!


Was bedeutet denn das ???

FRED


>  Wenn das nämlich geht, dann verstehe ich den Rest, weil
> dann sagt er einfach nur noch, dass
>  [mm]g\phi^{-1}(N')g^{-1} \subset \phi^{-1}(N')[/mm]
>  ist, was dann
> ja aus dem folgt, was ich nicht verstehe.
>  
> Wäre froh, über jeden Kommentar. :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]